Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Photochem Photobiol ; 99(2): 605-615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35652751

RESUMO

Triplet arylnitrenes may provide direct access to aryl azo-dimers, which have broad commercial applicability. Herein, the photolysis of p-azidostilbene (1) in argon-saturated methanol yielded stilbene azo-dimer (2) through the dimerization of triplet p-nitrenostilbene (3 1N). The formation of 3 1N was verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2-methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of 1 in methanol formed 3 1N (λmax ~ 370 nm, 2.85 × 107 s-1 ). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s-1 ) was assigned to a triplet excited state (T) of 1. Density functional theory calculations yielded three configurations for T of 1, with the unpaired electrons on the azido (TA ) or stilbene moiety (TTw , twisted and TFl , flat). The transient was assigned to TTw based on its calculated spectrum. CASPT2 calculations gave a singlet-triplet energy gap of 16.6 kcal mol-1 for 1 N; thus, intersystem crossing of 1 1N to 3 1N is unlikely at ambient temperature, supporting the formation of 3 1N from T of 1. Thus, sustainable synthetic methods for aryl azo-dimers can be developed using the visible-light irradiation of aryl azides to form triplet arylnitrenes.

2.
Photochem Photobiol ; 97(6): 1397-1406, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34346085

RESUMO

Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3-azido-3-phenyl-3H-isobenzofuran-1-one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV-Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2-methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene 1 1N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient.


Assuntos
Azidas , Iminas , Azidas/química , Azidas/efeitos da radiação , Iminas/química , Fotólise , Análise Espectral , Temperatura
3.
Org Lett ; 22(20): 7885-7890, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32975421

RESUMO

To expand the utility of α-cleavage at cryogenic temperatures, we investigated the photoreactivity of 2-azido-2-phenyl-1,3-indandione (1). EPR spectroscopy revealed that irradiating 1 in 2-methyltetrahydrofuran (mTHF) matrices forms alkylnitrene 32, which has zero-field splitting parameters (D/hc = 1.5837 cm-1; E/hc = 0.0039 cm-1) typical of an alkylnitrene. IR spectroscopy demonstrated that irradiating 1 in argon matrices results in the concurrent formation of 32, imine 3, benzocyclobutenedione 4, and benzonitrile 5.

4.
Molecules ; 25(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012736

RESUMO

To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration.


Assuntos
Alcenos/química , Azidas/química , Temperatura Baixa , Isoxazóis/química , Compostos Nitrosos/química , Fotólise , Alcenos/análise , Azidas/efeitos da radiação , Isoxazóis/efeitos da radiação , Compostos Nitrosos/análise , Teoria Quântica
5.
Angew Chem Int Ed Engl ; 59(22): 8355-8366, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31944500

RESUMO

In the past few years, numerous investigations have been reported on the role of heavy-atom tunneling in the area of pericyclic reactions, π-bond-shifting, and other processes. These studies illustrate unique strategies for the experimental detection of heavy-atom tunneling and the increased use of calculations to predict it. This Minireview focuses primarily on carbon tunneling in ground-state processes but also highlights nitrogen tunneling and the first example of excited-state heavy-atom tunneling. Salient features of these reactions along with potential limitations are discussed, as well as challenges and directions for future investigation.

6.
Org Lett ; 21(21): 8587-8591, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31613106

RESUMO

The contribution of heavy-atom tunneling to reactions of [12]- and [16]annulene was probed using small-curvature tunneling rate calculations. At the CCSD(T)/cc-pVDZ//M06-2X/cc-pVDZ level, tunneling is predicted to account for more than 50% of the rate for Möbius bond shifting and ca. 35% of the rate for electrocyclization in [12]annulene, and over 80% of the rate for Möbius bond shifting in [16]annulene, at temperatures at which these reactions have been observed experimentally.

7.
J Org Chem ; 84(14): 9215-9225, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31262179

RESUMO

The photoreactivity of cyclic vinyl azides 1 (3-azido-2-methyl-cyclopenten-1-one) and 2 (3-azido-2-methyl-2-cyclohexen-1-one), which have five- and six-membered rings, respectively, was characterized at cryogenic temperature with electron paramagnetic resonance (EPR), IR, and UV spectroscopy. EPR spectroscopy revealed that irradiating (λ > 250 nm) vinyl azides 1 and 2 in 2-methyltetrahydrofuran at 10 K resulted in the corresponding triplet vinylnitrenes 31N (D/hc = 0.611 cm-1 and E/hc = 0.011 cm-1) and 32N (D/hc = 0.607 cm-1 and E/hc = 0.006 cm-1), which are thermally stable at cryogenic temperature. Irradiation of vinyl azides 1 (310 nm light-emitting diode at 12 K) and 2 (xenon arc lamp through a 310-350 nm filter at 8 K) in argon matrices showed that in competition with intersystem crossing to form vinylnitrenes 31N and 32N, vinyl azide 1 formed a small amount of ketenimine 3, whereas vinyl azide 2 formed significant amounts of azirine 7 and ketenimine 6. Thus, vinyl azide 1 undergoes intersystem crossing more efficiently than vinyl azide 2. Similarly, vinylnitrene 31N is much more photoreactive than vinylnitrene 32N. Quantum chemical calculations were used to support the mechanisms for forming vinylnitrenes 31N and 32N and their reactivity.

8.
J Am Chem Soc ; 141(13): 5286-5293, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845804

RESUMO

Midsized annulenes are known to undergo rapid π-bond shifting. Given that heavy-atom tunneling plays a role in planar bond shifting of cyclobutadiene, we computationally explored the contribution of heavy-atom tunneling to planar π-bond shifting in the major (CTCTCTCT, 5a) and minor (CTCTTCTT, 6a) known isomers of [16]annulene. UM06-2X/cc-pVDZ calculations yield bond-shifting barriers of ca. 10 kcal/mol. The results also reveal extremely narrow barrier widths, suggesting a high probability of tunneling for these bond-shifting reactions. Rate constants were calculated using canonical variational transition state theory (CVT) as well as with small curvature tunneling (SCT) contributions, via direct dynamics. For the major isomer 5a, the computed SCT rate constant for bond shifting at 80 K is 0.16 s-1, corresponding to a half-life of 4.3 s, and indicating that bond shifting is rapid at cryogenic temperatures despite a 10 kcal/mol barrier. This contrasts with the CVT rate constant of 8.0 × 10-15 s-1 at 80 K. The minor isomer 6a is predicted to undergo rapid bond shifting via tunneling even at 10 K. For both isomers, bond shifting is predicted to be much faster than competing conformation change despite lower barriers for the latter process. The preference for bond shifting represents cases of tunneling control in which the preferred reaction is dominated by heavy-atom motions. At all temperatures below -50 °C, tunneling is predicted to dominate the bond shifting process for both 5a and 6a. Thus, [16]annulene is predicted to be an example of tunneling by 16 carbons. Bond shifting in both isomers is predicted to be rapid at temperatures accessible by solution-phase NMR spectroscopy, and an experiment is proposed to verify these predictions.

9.
J Org Chem ; 83(1): 314-322, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29224344

RESUMO

Density functional and coupled cluster results are presented for hydrogen shifts in radicals derived from polycyclic aromatic hydrocarbons (PAHs) and for rearrangement mechanisms for several phenylenes. RCCSD(T)/cc-pVDZ//UBLYP/cc-pVDZ free energy barriers for 1,4-H shifts at 298 K are consistently predicted to be ca. 25 kcal/mol, whereas barriers for 1,5- and 1,6-shifts range from 6 to 28 kcal/mol. The barriers correlate reasonably well with the distance from the radical center to the shifting hydrogen in the reactant. Proposed mechanisms (via diradical intermediates) of known rearrangements of linear [3]phenylene, benzo[b]biphenylene, and angular [4]phenylene have BD(T)/cc-pVDZ//(U)BLYP/cc-pVDZ computed barriers of 74-82 kcal/mol, consistent with pyrolysis temperatures of 900 to 1100 °C. Hydrogen shift reactions in most of the aryl diradicals arising from phenylenes produce m-benzyne intermediates which, despite being 8-15 kcal/mol more stable than other diradicals involved in the pathways, do not significantly lower the computed overall free energies of activation.

10.
J Am Chem Soc ; 138(45): 14905-14914, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27771952

RESUMO

Photolysis of 3-azido-1-indenone (1) with a light-emitting diode (LED, λ = 405 nm) or mercury arc lamp (Pyrex) resulted in the formation of heterodimer 3 in excellent yield, through dimerization of triplet vinylnitrene 32. At ambient temperature, vinylnitrene 32 (λmax at 340 and 480 nm) was detected directly with laser flash photolysis of vinyl azide 1. The vinylnitrene intermediate was also characterized directly with IR and ESR spectroscopy in cryogenic matrices. The ESR spectrum of vinylnitrene 32 yielded a zero-field splitting parameter |D/hc| of 0.460 cm-1 and |E/hc| of 0.015 cm-1, which reveals that vinylnitrene 32 has significant 1,3-biradical character. The proposed mechanism for the formation and reactivity of triplet vinylnitrene 32 was supported with density functional theory (DFT) calculations, which highlight that the steric demand of the five-membered ring in vinylnitrene 32 prevents intersystem crossing to the corresponding azirine (10). CASSCF and CASPT2 calculations showed that the energy gap between the singlet and triplet configurations of vinylnitrene 2 is only 10 kcal/mol. In spite of this small energy gap, vinylnitrene 32 does not decay by intersystem crossing, but rather by dimerization. Thus, triplet vinylnitrenes can be selectively formed with visible light and used to form new C-N bonds in synthetic applications.

11.
J Org Chem ; 80(23): 11718-25, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26301994

RESUMO

Carbene, cyclobutyl, and potential diradical mechanisms were studied computationally for Stone-Wales rearrangements in several derivatives of as-indacene and pyracyclene, including cyclopent[hi]acephenanthrylene, dicyclopenta[cd,fg]pyrene, corannulene, diindeno[1,2,3,4-defg;1',2',3',4'-mnop]chrysene, and semibuckminsterfullerene. At the UM06-2X/cc-pVDZ and BD(T)/cc-pVDZ//UM06-2X/cc-pVDZ levels of theory, free energies of reaction reveal that transformations involving an increase in curvature are thermodynamically unfavorable. In addition, the carbene transition states or intermediates (corrected to 1000 °C) are generally around 100-120 kcal/mol higher than starting substrates, except for as-indacene (80 kcal/mol), which is the only process considered here that is predicted to have a barrier accessible under typical flash vacuum pyrolysis conditions. For pyracyclene derivatives, the relative free energy of cyclobutyl intermediates rises steadily with increasing curvature of the substrate and increasing annelation. Singlet acetylenic diradicals related to pyracyclene, diindenochrysene, and semibuckminsterfullerene are predicted to be second- or higher-order saddle points that lie more than 40 kcal/mol higher than the corresponding carbenes and cyclobutyl intermediates.

12.
J Org Chem ; 80(8): 3825-31, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25843555

RESUMO

Mechanisms for Stone-Wales rearrangements (SWRs) in polycyclic unsaturated hydrocarbons containing a pentafulvalene core have been studied using density functional, coupled cluster, and multiconfigurational methods. At the BD(T)/cc-pVDZ//(U)M06-2X/cc-pVDZ level of theory, free energies of activation (at 1000 °C) range from ca. 70 kcal/mol for the model system pentafulvalene → naphthalene (1 → 2) to >110 kcal/mol for the degenerate SWR of pyracyclene (3). Systems studied that do not contain a pyracyclene subunit are predicted to have ΔG(‡) less than about 90 kcal/mol and to proceed by a carbene-type mechanism. Substrates containing a pyracyclene subunit should proceed via a cyclobutyl mechanism, and appropriate benzannelation of 3 lowers the activation free energy considerably. Computed ΔG(‡) values are consistent with experimental observations reported for known systems. SWRs of two untested substrates, cyclopent[fg]aceanthrylene (18) and dicyclopenta[fg,op]tetracene (21), are predicted to have ΔG(‡) < 95 kcal/mol and thus to be accessible via flash vacuum pyrolysis.

13.
J Org Chem ; 78(5): 2033-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23106831

RESUMO

Computational investigation of the potential energy surfaces of dehydro[10]- and dehydro[14]annulenes revealed that mechanisms involving Hückel and Möbius π-bond shifting can explain the observed or proposed configuration change reactions. Unlike the case of annulenes, in which bond-shift midpoints correspond to transition states, for transformations of dehydroannulenes with Δtrans = 0, "hidden" Hückel bond shifts occur on the side of an energy hill, on the way to a cumulenic, purely conformational transition state. For example, interconversion between CTCCTC-dehydro[14]annulene (1a) and CCTCTC-dehydro[14]annulene (2a) has a CCSD(T)/cc-pVDZ//BHLYP/6-31G* barrier of 18.7 kcal/mol, consistent with experimental observations, and proceeds via a conformational transition state, with Hückel π-bond shifts occurring both before and after the transition state. However, when Δtrans = 1, a true Möbius π-bond shift transition state was located. The isomerization of CCTC-dehydro[10]annulene (10) to CCCC-dehydro[10]annulene (11) occurs by an initial "hidden" Hückel bond shift, followed by passage through a Möbius bond-shift transition state to 11, with an overall barrier of 29.8 kcal/mol at the CASPT2(12,12)/cc-pVDZ//(U)BHLYP/6-31G* level of theory. This is the lowest energy pathway between 10 and 11, in contrast to a cyclization/ring-opening route via a bicyclic allene described in previous reports.

14.
J Org Chem ; 76(2): 403-7, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21192655

RESUMO

Density functional and coupled cluster calculations on neutral monodehydro[12]annulenes (C(12)H(10)) reveal a global minimum that should be kinetically stable. At the CCSD(T)/cc-pVDZ//BHLYP/6-31G* level, the unsymmetrical CTCTC conformer 1a lies at least 3 kcal/mol below all other isomers studied. The two isomers closest in energy to 1a are Möbius structure 5a (CCTCC) and all-cis 6a. Isomer 1a can undergo conformational automerization with E(a) = 3.9 kcal/mol, implying that this process would be rapid on the NMR time scale, and computed (1)H NMR parameters (GIAO-B3LYP/6-311+G**//RHF/6-31G*) are presented. Cumulenic dehydro[12]annulene isomers, with 1,2,3-butatriene subunits, were found to be reactive intermediates in the interconversion of different configurations of the alkyne forms. Pathways for configuration change of 1a, and for subsequent rearrangement to biphenyl, were investigated. The 28 kcal/mol overall barrier for the lowest energy pathway connecting 1a to biphenyl suggests that 1a is kinetically stable with respect to valence isomerization.


Assuntos
Compostos Macrocíclicos/química , Simulação por Computador , Isomerismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
15.
Org Lett ; 12(5): 972-5, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20121256

RESUMO

Mechanisms linking dihydrooctalenes and the corresponding [14]annulene isomers have been investigated computationally. CCSD(T)/cc-pVDZ//BHLYP/6-31G* calculations suggest that the cis/trans isomerization steps required by these mechanisms can occur with reasonable activation barriers by pi-bond shifting, in some cases with two-twist topology, and in others in a planar but nondegenerate fashion. In addition, numerous Mobius conformational minima were located for [14]annulene isomers directly related to the mechanisms studied.

16.
Chem Commun (Camb) ; (15): 1967-9, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19333459

RESUMO

Flash vacuum pyrolysis of angular [4]phenylene furnishes "biphenylene dimer" on route to coronene.

17.
J Org Chem ; 73(22): 8745-54, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18939874

RESUMO

We report density functional and coupled cluster calculations on numerous monocyclic and bicyclic (CH)12(*-) isomers. At the RCCSD(T)/cc-pVDZ//UB3LYP/6-31+G* level, a nearly planar, bond-equalized radical anion of 1,7-di-trans-[12]annulene (4a(*-)) is lowest in energy; several other isomers and conformations lie within 3 kcal/mol of 4a(*-). RCCSD(T)/AUG-cc-pVDZ//UB3LYP/6-31+G* results place the all-cis isomer 3(*-) slightly below 4a(*-) in energy. Validation studies on the heptalene radical anion, [16]annulene radical anion, and tri-trans-[12]annulene radical anion indicate that electron spin resonance (ESR) hyperfine coupling constants (aH values) computed at the BLYP/EPR-III level on DFT geometries give much better agreement with experimental values than those computed using B3LYP/6-31G*. We were unable to locate any C12H12(*-) isomer that could account for the ESR spectrum previously attributed to a highly twisted structure for the 1,7-di-trans-[12]annulene radical anion. Our computed energetic and ESR data for [12]annulene radical anions and their valence isomers suggest that 4a(*-) may have been made, yet its ESR spectrum was incorrectly assigned to the bicyclic isomer 6b(*-). Finally, the computed (1)H NMR shift values of the dianion of 4 reveal a distinct diatropic ring current that should aid in its characterization.

18.
Org Lett ; 10(6): 1287-90, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18302401

RESUMO

Experimentally, tri-trans-[12]annulene and tris(cyclohexeno)[12]annulene exhibit differing reactivities. Whereas the former, after isomerizing to its di-trans isomer, undergoes sequential electrocyclizations, the latter follows a Diels-Alder pathway after initial electrocyclization. B3PW91/6-31+G*//B3LYP/6-31G* calculations indicate that cyclohexenofusion simultaneously hinders the second electrocyclization and facilitates Diels-Alder reaction, primarily by inducing greater puckering in the intermediate eight-membered ring.

19.
J Org Chem ; 73(4): 1532-5, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18198891

RESUMO

A new global minimum for [12]annulene has been computationally located. This mono-trans minimum 5 (CCCCCT) is computed to be 1.5 kcal/mol more stable (CCSD(T)/cc-pVDZ//BHHLYP/6-311+G**) than the known tri-trans isomer 1 (CTCTCT) and 2.4 kcal/mol lower than the di-trans isomer 4 (CCTCCT), for which there is indirect evidence. The barriers for several rearrangements of 5 were all computed to be above 15 kcal/mol, indicating that direct experimental characterization of 5 should be possible. The computed barriers for the dynamic processes (including conformational automerization) coupled with computed 1H NMR shift values should aid in the future characterization of this [12]annulene isomer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA