Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Toxicol In Vitro ; 98: 105830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641231

RESUMO

Local drug delivery systems based on bioceramics ensure safe and effective treatment of bone defects and anticancer therapy. A promising drug delivery scaffold material for bone treatment applications is diopside (CaMgSi2O6) which is bioactive, degradable, and possesses drug-release ability. Currently, in vitro assessment of drug release from biomaterials is performed mostly on a 2D cell monolayer. However, to interpret and integrate biochemical signals, cells need a 3D microenvironment that provides cell-cell and cell-extracellular matrix interactions. In this regard, 3D cell models are gaining popularity. In this work, we proposed the protocol for evaluation of the effect of doxorubicin released from diopside on MG-63 cells and primary human fibroblasts in 3D culture conditions. Tissue spheroids with similar diameters were incubated with doxorubicin-loaded diopside for 72 h, the amount of diopside was calculated in accordance with the required doxorubicin concentration. We demonstrated that doxorubicin is gradually released from diopside and exhibits an activity similar to that of the pure drug at the same total concentration. It is important to note that doxorubicin was more potent on MG-63 spheroids compared to HF spheroids, which confirmed the reliability of spheroids as 3D models of tumor and healthy tissues.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Liberação Controlada de Fármacos , Esferoides Celulares , Humanos , Doxorrubicina/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos
2.
Photodiagnosis Photodyn Ther ; 42: 103647, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37271489

RESUMO

BACKGROUND: One of the tasks of anticancer photodynamic therapy is increasing the efficacy of treatment of cancer nodes with large (clinically relevant) sizes using near-infrared photosensitizers (PS). METHODS: The anticancer efficacy and mechanisms of the photodynamic action of PS based on polycationic derivatives of synthetic bacteriochlorin against Lewis lung carcinoma were studied in vitro and in vivo. RESULTS: It was found that studied PS have high phototoxicity against Lewis lung carcinoma cells: the IC50 values were about 0.8 µM for tetracationic PS and 0.5 µM for octacationic PS. In vivo studies have shown that these PS provide effective inhibition of the tumor growth with an increase in the lifespan of mice in the group by more than 130%, and more than 50% survival of mice in the group. CONCLUSIONS: Photosensitizers based on polycationic derivatives of synthetic bacteriochlorin have high photodynamic efficacy caused by the induction of necrosis and apoptosis of cancer cells, including cancer stem cells, and a sharp decrease of mitotic and proliferative activity. Studied polycationic photosensitizers are much more effective at destroying cancer stem cells and newly formed cancer vessels in comparison with anionic photosensitizers, and ensure the cessation of tumor blood flow without hemorrhages and thrombosis.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/normas , Neoplasias Pulmonares/terapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/síntese química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Carcinoma Pulmonar de Lewis/terapia , Concentração Inibidora 50 , Análise de Sobrevida , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
3.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241899

RESUMO

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Assuntos
Carcinoma , Neoplasias Pulmonares , Animais , Camundongos , Bleomicina/toxicidade , Aerossóis e Gotículas Respiratórios , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carcinoma/patologia
4.
Photodiagnosis Photodyn Ther ; 40: 103202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400167

RESUMO

Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Linhagem Celular Tumoral , Fígado
5.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233347

RESUMO

The purpose of this study was to determine the anticancer effect of dipropyl thiosulfinate produced in situ by the pharmacological pair: (1) conjugated with daidzein C115H methionine γ-lyase (EC 4.4.1.11, C115H MGL-Dz) and (2) the substrate, S-propyl-L-cysteine sulfoxide (propiin) against various solid tumor types in vitro and in vivo. The MTT test was used to calculate IC50 values for HT29, COLO205 and HCT116 (colon cancer); Panc1 and MIA-PaCa2 (pancreatic cancer); and 22Rv1, DU-145 and PC3 (prostate cancer). The most promising effect for colon cancer cells in vitro was observed in HT29 (IC50 = 6.9 µM). The IC50 values for MIA-PaCa2 and Panc1 were 3.4 and 3.8 µM, respectively. Among prostate cancer cells, 22Rv1 was the most sensitive (IC50 = 5.4 µM). In vivo antitumor activity of the pharmacological pair was studied in HT29, SW620, Panc1, MIA-PaCa2 and 22Rv1 subcutaneous xenografts in BALB/c nude mice. The application of C115H MGL-Dz /propiin demonstrated a significant reduction in the tumor volume of Panc1 (TGI 67%; p = 0.004), MIA-PaCa2 (TGI 50%; p = 0.011), HT29 (TGI 51%; p = 0.04) and 22Rv1 (TGI 70%; p = 0.043) xenografts. The results suggest that the combination of C115H MGL-Dz/propiin is able to suppress tumor growth in vitro and in vivo and the use of this pharmacological pair can be considered as a new strategy for the treatment of solid tumors.


Assuntos
Neoplasias do Colo , Neoplasias Pancreáticas , Pró-Fármacos , Neoplasias da Próstata , Animais , Liases de Carbono-Enxofre , Linhagem Celular Tumoral , Cisteína/análogos & derivados , Xenoenxertos , Humanos , Isoflavonas , Masculino , Metionina , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Sulfóxidos
6.
Cell Tissue Res ; 390(3): 453-464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129531

RESUMO

In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids' regenerative potential in vivo.


Assuntos
Bioimpressão , Esferoides Celulares , Humanos , Fibroblastos , Técnicas de Cultura de Células , Pele , Engenharia Tecidual
7.
Photodiagnosis Photodyn Ther ; 39: 102955, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690323

RESUMO

BACKGROUND: One of the tasks of anticancer photodynamic therapy is increasing the efficacy of treatment of cancer nodes with large (clinically relevant) sizes using near-infrared photosensitizers (PS). We study the photodynamic action against A549 human lung cancer cells using PS based on polycationic derivatives of synthetic bacteriochlorin. METHODS: The efficacy and mechanisms of the photodynamic action of PS based on polycationic derivatives of synthetic bacteriochlorin against A549 lung cancer cells were studied in vitro using immunocytochemical and morphological methods. RESULTS: It was found that PS based on tetracationic and octacationic derivatives of synthetic bacteriochlorin induce necrosis, apoptosis, decreasing of proliferative and mitotic activity, as well as reducing the number of ALDH1-positive cancer cells with signs of stem cells in A549 human lung cancer cell culture. The IC50 values (concentration of a PS that reduces cells survival by 50%) were about 0.69 µM for tetracationic PS and 0.57 µM for octacationic PS under irradiation at 30 J/cm2 while in the "dark" control they were higher than 100 µM for both PSs. CONCLUSIONS: Photosensitizers based on polycationic derivatives of synthetic bacteriochlorin have high phototoxicity against A549 cancer cells caused by the induction of necrosis and apoptosis of cancer cells, including cells with signs of stemness, and a sharp decrease of mitotic and proliferative activity.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Necrose/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia
8.
Arch Pharm (Weinheim) ; 355(1): e2100316, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668210

RESUMO

The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 µM, 22.87 ± 0.54 versus 28.80 ± 1.61 µM, and 35.86 ± 5.63 versus 109.87 ± 35.15 µM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Norpregnadienos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Norpregnadienos/administração & dosagem , Células PC-3 , Ratos , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Testosterona/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832852

RESUMO

L-lysine α-oxidase (LO), one of L-amino acid oxidases, deaminates L-lysine with the yield of H2O2, ammonia, and α-keto-ε-aminocaproate. Multiple in vitro and in vivo studies have reported cytotoxic, antitumor, antimetastatic, and antitumor activity of LO. Unlike asparaginase, LO has a dual mechanism of action: depletion of L-lysine and formation of H2O2, both targeting tumor growth. Prominent results were obtained on murine and human tumor models, including human colon cancer xenografts HCT 116, LS174T, and T47D with maximum T/C 12, 37, and 36%, respectively. The data obtained from human cancer xenografts in immunodeficient mice confirm the potential of LO as an agent for colon cancer treatment. In this review, we discuss recently discovered molecular mechanisms of biological action and the potential of LO as anticancer enzyme.

10.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34610738

RESUMO

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polímeros , Cápsulas , Campos Magnéticos , Engenharia Tecidual
11.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985193

RESUMO

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Assuntos
Complexos de Coordenação/química , Cobre/química , Imidazóis/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Dano ao DNA/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Modelos Biológicos , Conformação Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos , Relação Estrutura-Atividade , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
12.
J Gene Med ; 18(9): 220-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27461566

RESUMO

BACKGROUND: The combination of stem cell-based gene therapy with chemotherapy comprises an advantageous strategy that results in a reduction of system toxicity effects and an improvement in the general efficacy of treatment. In the present study, we estimated the efficacy of adipose tissue-derived mesenchymal stem cells (AT-MSCs) expressing cytosine deaminase (CDA) combined with lysomustine chemotherapy in mice bearing late stage Lewis lung carcinoma (LLC). METHODS: Adipose tissue-derived mesenchymal stem cells were transfected with non-insert plasmid construct transiently expressing fused cytosine deaminase-uracil phosphoribosyltransferase protein (CDA/UPRT) or the same construct fused with Herpes Simplex Virus Type1 tegument protein VP22 (CDA/UPRT/VP22). Systemic administration of 5-fluorocytosine (5FC) and lysomustine was implemented after a single intratumoral injection of transfected AT-MSCs. RESULTS: We demonstrated that direct intratumoral transplantation of AT-MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5FC resulted in a significant tumor growth inhibition. There was a 56% reduction in tumor volume in mice treated by AT-MSCs-CDA/UPRT + 5FC or with AT-MSCs-CDA/UPRT/VP22 + 5FC compared to control animals grafted with lung carcinoma alone. Transplantation of AT-MSCs-CDA/UPRT + 5FC and AT-MSCs-CDA/UPRT/VP22 + 5FC prolonged the life span of mice bearing LLC by 27% and 31%, respectively. Co-administration of lysomustine and AT-MSCs-CDA/UPRT + 5FC led to tumor growth inhibition (by 86%) and life span extension (by 60%) compared to the control group. CONCLUSIONS: Our data indicate that a combination CDA/UPRT-expressing AT-MSCs with lysomustine has a superior antitumor effect in the murine lung carcinoma model compared to monotherapies with transfected AT-MSCs or lysomustine alone, possibly because of a synergistic effect of the combination therapy. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Carcinoma Pulmonar de Lewis/terapia , Citosina Desaminase/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Compostos de Nitrosoureia/farmacologia , Tecido Adiposo/citologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Terapia Combinada , Citosina Desaminase/genética , Feminino , Flucitosina/administração & dosagem , Flucitosina/farmacologia , Terapia Genética/métodos , Masculino , Camundongos Endogâmicos C57BL , Compostos de Nitrosoureia/administração & dosagem , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
13.
Oncol Lett ; 11(6): 4264-4268, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27313776

RESUMO

Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA