RESUMO
MHC-I-specific receptors play a vital role in NK cell-mediated "missing-self" recognition, which contributes to NK cell activation. In contrast, MHC-independent NK recognition mechanisms are less well characterized. In this study, we investigated the role of NKR-P1B:Clr-b (Klrb1:Clec2d) interactions in determining the outcome of murine hematopoietic cell transplantation in vivo. Using a competitive transplant assay, we show that Clr-b(-/-) bone marrow (BM) cells were selectively rejected by wild-type B6 recipients, to a similar extent as H-2D(b-/-) MHC-I-deficient BM cells. Selective rejection of Clr-b(-/-) BM cells was mitigated by NK depletion of recipient mice. Competitive rejection of Clr-b(-/-) BM cells also occurred in allogeneic transplant recipients, where it was reversed by selective depletion of NKR-P1B(hi) NK cells, leaving the remaining NKR-P1B(lo) NK subset and MHC-I-dependent missing-self recognition intact. Moreover, competitive rejection of Clr-b(-/-) hematopoietic cells was abrogated in Nkrp1b-deficient recipients, which lack the receptor for Clr-b. Of interest, similar to MHC-I-deficient NK cells, Clr-b(-/-) NK cells were hyporesponsive to both NK1.1 (NKR-P1C)-stimulated and IL-12/18 cytokine-primed IFN-γ production. These findings support a unique and nonredundant role for NKR-P1B:Clr-b interactions in missing-self recognition of normal hematopoietic cells and suggest that optimal BM transplant success relies on MHC-independent tolerance mechanisms. These findings provide a model for human NKR-P1A:LLT1 (KLRB1:CLEC2D) interactions in human hematopoietic cell transplants.
Assuntos
Transplante de Medula Óssea/métodos , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Expressão Gênica/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Antígeno de Histocompatibilidade H-2D/genética , Antígeno de Histocompatibilidade H-2D/imunologia , Antígeno de Histocompatibilidade H-2D/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Subfamília B de Receptores Semelhantes a Lectina de Células NK/deficiência , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante HomólogoRESUMO
NKR-P1B is a homodimeric type II transmembrane C-type lectinlike receptor that inhibits natural killer (NK) cell function upon interaction with its cognate C-type lectin-related ligand, Clr-b. The NKR-P1B:Clr-b interaction represents a major histocompatibility complex class I (MHC-I)-independent missing-self recognition system that monitors cellular Clr-b levels. We have generated NKR-P1B(B6)-deficient (Nkrp1b(-/-)) mice to study the role of NKR-P1B in NK cell development and function in vivo. NK cell inhibition by Clr-b is abolished in Nkrp1b(-/-) mice, confirming the inhibitory nature of NKR-P1B(B6). Inhibitory receptors also promote NK cell tolerance and responsiveness to stimulation; hence, NK cells expressing NKR-P1B(B6) and Ly49C/I display augmented responsiveness to activating signals vs NK cells expressing either or none of the receptors. In addition, Nkrp1b(-/-) mice are defective in rejecting cells lacking Clr-b, supporting a role for NKR-P1B(B6) in MHC-I-independent missing-self recognition of Clr-b in vivo. In contrast, MHC-I-dependent missing-self recognition is preserved in Nkrp1b(-/-) mice. Interestingly, spontaneous myc-induced B lymphoma cells may selectively use NKR-P1B:Clr-b interactions to escape immune surveillance by wild-type, but not Nkrp1b(-/-), NK cells. These data provide direct genetic evidence of a role for NKR-P1B in NK cell tolerance and MHC-I-independent missing-self recognition.
Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Lectinas Tipo C/fisiologia , Linfoma de Células B/imunologia , Proteínas de Membrana/fisiologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/fisiologia , Animais , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Ligantes , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Thalassemia is an inherited disorder of alpha or beta globin chain synthesis leading to ineffective erythropoiesis requiring chronic transfusion therapy in its most severe form. This leads to iron overload, marrow expansion, and hormonal complications, which are implicated in bone deformity and loss of bone mineral density (BMD). In this 19-year retrospective longitudinal study, the relationships between BMD (determined by dual-energy X-ray absorptiometry) and risk factors for osteoporosis in 277 subjects with transfusion-dependent thalassemia were examined. The mean age at first review was 23.2 ± 11.9 years and 43.7% were male. Hypogonadism was present in 28.9%. Fractures were confirmed in 11.6% of subjects and were more frequent in males (16.5%) compared with females (7.7%). Lumbar spine (LS), femoral neck (FN), and total body (TB) Z-scores were derived. Patients with transfusion-dependent thalassemia had a significant longitudinal decline in BMD at the FN and TB. In the linear mixed-model analysis of BMD and risk factors for bone loss, FN Z-score was more significantly associated with risk factors compared with the LS and TB. The rate of decline at the FN was 0.02 Z-score per year and was 3.85-fold greater in males. The decline in FN Z-score over the last 5 years (years 15 to 19) was 2.5-fold that of the previous 7 years (years 8 to 14) and coincided with a change in iron chelator therapy from desferrioxamine to deferasirox. Hemoglobin (Hb) levels positively correlated with higher TB and LS Z-scores. In conclusion, the FN is the preferred site for follow-up of BMD. Male patients with ß-thalassemia experienced a greater loss of BMD and had a higher prevalence of fractures compared with females. Transfusing patients (particularly males) to a higher Hb target may reduce the decline in BMD. Whether deferasirox is implicated in bone loss warrants further study.
Assuntos
Densidade Óssea , Osteoporose/metabolismo , Talassemia/metabolismo , Adulto , Transfusão de Sangue , Criança , Feminino , Seguimentos , Humanos , Quelantes de Ferro/administração & dosagem , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Sobrecarga de Ferro/terapia , Estudos Longitudinais , Masculino , Osteoporose/etiologia , Osteoporose/patologia , Osteoporose/terapia , Fatores Sexuais , Talassemia/complicações , Talassemia/etiologia , Talassemia/patologia , Talassemia/terapiaRESUMO
Osteoclast inhibitory lectin (OCIL or clrb) is a member of the natural killer cell C-type lectins that have a described role mostly in autoimmune cell function. OCIL was originally identified as an osteoblast-derived inhibitor of osteoclast formation in vitro. To determine the physiological function(s) of OCIL, we generated ocil(-/-) mice. These mice appeared healthy and were fertile, with no apparent immune function defect, and phenotypic abnormalities were limited to bone. Histomorphometric analysis revealed a significantly lower tibial trabecular bone volume and trabecular number in the 10- and 16-week-old male ocil(-/-) mice compared with wild type mice. Furthermore, ocil(-/-) mice showed reduced bone formation rate in the 10-week-old females and 16-week-old males while Static markers of bone formation showed no significant changes in male or female ocil(-/-) mice. Examination of bone resorption markers in the long bones of ocil(-/-) mice indicated a transient increase in osteoclast number per unit bone perimeter. Enhanced osteoclast formation was also observed when either bone marrow or splenic cultures were generated in vitro from ocil(-/-) mice relative to wild type control cultures. Loss of ocil therefore resulted in osteopenia in adult mice primarily as a result of increased osteoclast formation and/or decreased bone formation. The enhanced osteoclastic activity led to elevated serum calcium levels, which resulted in the suppression of circulating parathyroid hormone in 10-week-old ocil(-/-) mice compared with wild type control mice. Collectively, our data suggest that OCIL is a physiological negative regulator of bone.
Assuntos
Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Tíbia/metabolismo , Animais , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/genética , Reabsorção Óssea/sangue , Reabsorção Óssea/genética , Cálcio/sangue , Feminino , Humanos , Lectinas Tipo C/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Tamanho do Órgão/fisiologiaRESUMO
Osteoclast inhibitory lectin (OCIL) is a type II C-type lectin and binds NK cell-associated receptor Nkrp1d and sulfated glycosaminoglycans. OCIL is expressed by several cell types found in bone and inhibits osteoclast differentiation. To determine whether OCIL may have wider effects on bone metabolism, we examined the effects of recombinant soluble OCIL on cultured osteoblasts and pre-osteoblastic KUSA O cells. Although OCIL did not affect osteoblast proliferation or apoptosis, or the formation of alkaline phosphatase positive colonies in cultured bone marrow, OCIL profoundly inhibited mineralization by primary osteoblasts and KUSA O cells in vitro. Analysis of ascorbate-treated KUSA O cells showed that addition of OCIL reduced bone sialoprotein (BSP), osterix and osteocalcin mRNA expression, as well as alkaline phosphatase activity while, in contrast, expression of markers associated with the earlier stages of osteoblast maturation or the transcription factors Runx2, ATF4 and c-fos were not affected by OCIL treatment. Indeed, osteocalcin expression was strongly inhibited within 3 days in a dose-dependent manner, although after subsequent removal of OCIL, osteocalcin mRNA levels recovered within 4 days. OCIL treatment also reduced osteocalcin expression in BMP-2 stimulated C2C12 cells. In support of a role for OCIL in mineralization, OCIL anti-sense oligonucleotide treatment of KUSA O cells increased mineralization and osteocalcin expression. In addition, insulin-, dexamethasone- and IBMX-stimulated KUSA O cells undergo adipocyte differentiation and OCIL treatment greatly suppressed this process. Consistent with this, OCIL also reduced adiponectin and resistin mRNA expression in these cells. Our data indicate that OCIL reduces osteoblastic function in vitro and this may be due to an inhibitory effect on osteoblast maturation. In addition, the reduction of adipocyte formation in KUSA O cells by OCIL indicates that OCIL may have wider effects on the mesenchymal lineage that may be important for both bone metabolism and other connective tissue functions.
Assuntos
Lectinas Tipo C/fisiologia , Proteínas de Membrana/fisiologia , Osteoblastos/citologia , Adipogenia , Animais , Apoptose , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica/fisiologia , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/fisiologia , Osteocalcina/metabolismo , Osteopontina/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Pigment epithelium-derived factor (PEDF) is a potent anti-angiogenic factor found in a wide range of fetal and adult tissues, where it is thought to play a role in the regulation of angiogenesis during development. The temporal expression of PEDF during endochondral bone formation has not previously been reported. In this study, we analysed the expression pattern of PEDF in growing mouse hindlimbs from newborn day one through to maturation at week 9, using immunohistochemistry and in situ hybridization. PEDF expression was demonstrated in chondrocytes within the resting, proliferative and upper hypertrophic zones of the epiphyseal growth plate. The pattern of expression was consistent throughout the developmental stages of the mouse. In addition, PEDF was expressed by osteoblasts lining the bone spicules in the ossification zone of metaphyseal bone, as well as by osteoblasts lining cortical periosteum. These novel results demonstrate that PEDF is developmentally expressed in both cartilage and bone cells during endochondral bone formation, and strongly suggest that it may play a regulatory role in the processes of chondrocyte and osteoblast differentiation, endochondral ossification, and bone remodelling during growth and development of long bones.
Assuntos
Desenvolvimento Ósseo/fisiologia , Proteínas do Olho/metabolismo , Lâmina de Crescimento/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Tíbia/metabolismo , Animais , Animais Recém-Nascidos , Remodelação Óssea/fisiologia , Condrócitos/metabolismo , Proteínas do Olho/genética , Membro Posterior , Técnicas Imunoenzimáticas , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fatores de Crescimento Neural/genética , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Serpinas/genética , Tíbia/anatomia & histologiaRESUMO
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite and amorphous calcium phosphate crystals deposited in an organic matrix. Bone has two main functions. It forms a rigid skeleton and has a central role in calcium and phosphate homeostasis. The major cell types of bone are osteoblasts, osteoclasts and chondrocytes. In the laboratory, primary cultures or cell lines established from each of these different cell types provide valuable information about the processes of skeletal development, bone formation and bone resorption, leading ultimately, to the formulation of new forms of treatment for common bone diseases such as osteoporosis.
Assuntos
Osso e Ossos/citologia , Osteócitos/citologia , Animais , Reabsorção Óssea , Linhagem Celular , Humanos , Osteócitos/fisiologiaRESUMO
Osteoclast inhibitory lectin (OCIL) is a membrane-bound C-type lectin that blocks osteoclast differentiation and, via binding to its cognate receptor NKRP1D, inhibits natural killer cell-mediated cytotoxicity. OCIL is a member of the natural killer cell receptor C-type lectin group that includes CD69 and NKRP1D. We investigated carbohydrate binding of soluble recombinant human and mouse OCIL in enzyme-linked immunosorbent assay-based assays. OCIL bound immobilized high molecular weight sulfated glycosaminoglycans, including fucoidan, lambda-carrageenan, and dextran sulfate, but not unsulfated dextran or sialated hyaluronic acid. Carbohydrate binding was Ca(2+)-independent. Binding of immobilized low molecular weight glycosaminoglycans, including chondroitin sulfate (A, B, and C forms) and heparin, was not observed. However, the soluble forms of these low molecular weight glycosaminoglycans competed for OCIL binding of immobilized fucoidan (as did soluble fucoidan, dextran sulfate, and lambda-carrageenan), indicating that OCIL does recognize these carbohydrates. Inhibition constants for chondroitin sulfate A and heparin binding were 380 and 5 nm, respectively. Immobilized and soluble monosaccharides did not bind OCIL. The presence of saturating levels of fucoidan, dextran sulfate, and lambda-carrageenan did not affect OCIL inhibition of osteoclast formation. The fucoidan-binding lectins Ulex europaeus agglutinin I and Anguilla anguilla agglutinin did not block osteoclast formation or affect the inhibitory action of OCIL. Although the osteoclast inhibitory action of OCIL is independent of sugar recognition, we have found that OCIL, a lectin widely distributed, but notably localized in bone, skin, and other connective tissues, binds a range of physiologically important glycosaminoglycans, and this property may modulate OCIL actions upon other cells.
Assuntos
Metabolismo dos Carboidratos , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Receptores de Superfície Celular , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Ensaio de Imunoadsorção Enzimática , Glicosaminoglicanos/metabolismo , Humanos , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
UNLABELLED: Osteoclast inhibitory lectin (OCIL) is a newly recognized inhibitor of osteoclast formation. We identified a human homolog of OCIL and its gene, determined its regulation in human osteoblast cell lines, and established that it can inhibit murine and human osteoclast formation and resorption. OCIL shows promise as a new antiresorptive. INTRODUCTION: Murine and rat osteoclast inhibitory lectins (mOCIL and rOCIL, respectively) are type II membrane C-type lectins expressed by osteoblasts and other extraskeletal tissues, with the extracellular domain of each, expressed as a recombinant protein, able to inhibit in vitro osteoclast formation. MATERIALS AND METHODS: We isolated the human homolog of OCIL (hOCIL) from a human fetal cDNA library that predicts a 191 amino acid type II membrane protein, with the 112 amino acid C-type lectin region in the extracellular domain having 53% identity with the C-type lectin sequences of rOCIL and mOCIL. The extracellular domain of hOCIL was expressed as a soluble recombinant protein in E. coli, and its biological effects were determined. RESULTS AND CONCLUSIONS: The hOCIL gene is 25 kb in length, comprised of five exons, and is a member of a superfamily of natural killer (NK) cell receptors encoded by the NK gene complex located on chromosome 12. Human OCIL mRNA expression is upregulated by interleukin (IL)-1alpha and prostaglandin E2 (PGE2) in a time-dependent manner in human osteogenic sarcoma MG63 cells, but not by dexamethasone or 1,25 dihydroxyvitamin D3. Soluble recombinant hOCIL had biological effects comparable with recombinant mOCIL on human and murine osteoclastogenesis. In addition to its capacity to limit osteoclast formation, OCIL was also able to inhibit bone resorption by mature, giant-cell tumor-derived osteoclasts. Thus, a human homolog of OCIL exists that is highly conserved with mOCIL in its primary amino acid sequence (C-lectin domain), genomic structure, and activity to inhibit osteoclastogenesis.
Assuntos
Lectinas Tipo C/fisiologia , Osteoclastos/fisiologia , Receptores de Superfície Celular , Fosfatase Ácida/análise , Sequência de Aminoácidos , Animais , Células da Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , DNA/química , DNA/genética , Dexametasona/farmacologia , Dinoprostona/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/farmacologia , Isoenzimas/análise , Lectinas Tipo C/genética , Fator Estimulador de Colônias de Macrófagos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Células-Tronco/efeitos dos fármacos , Fosfatase Ácida Resistente a TartaratoRESUMO
We have identified two novel type II membrane-bound C-lectins, designated mOCILrP1 and mOCILrP2, of 218 and 217 amino acids, respectively, that share substantial identity with the murine osteoclast inhibitory lectin (OCIL). The extracellular domains of mOCILrP1 and mOCILrP2 share 83 and 75% identity, respectively, with the extracellular domain of mOCIL. When the extracellular domains were expressed as recombinant proteins, each inhibited osteoclast formation in murine bone marrow cultures treated with M-CSF and RANKL with similar potencies to mOCIL (IC(50) of 0.2 ng/ml). Distinct but highly related genes encoded the three OCIL family members, with mOCIL and mOCILrP2 controlled by an inverted TATA promoter, and mOCILrP1 by a TTAAAA promoter. However only mOCIL was robustly regulated by calciotropic agents, while mOCILrP1 was not expressed, and mOCILrP2 was constitutively expressed in osteoblasts. Immunohistochemistry using antipeptide antibodies to the intracellular domain of mOCILrP1/mOCILrP2 and to mOCIL demonstrated that mOCIL and mOCILrP1/mOCILrP2 were concordantly expressed in osteoblasts, chondrocytes, and in extraskeletal tissues. Further, their cellular distribution was identical to that of RANKL. The identification of three distinct genes that were functionally related implies redundancy for OCIL, and their concordant expression with that of RANKL suggests that the RANKL:OPG axis may be further influenced by OCIL family members.