Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
ACS Cent Sci ; 10(4): 907-919, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680557

RESUMO

The response of an oxide crystal to the atmosphere can be personified as breathing-a dynamic equilibrium between O2 gas and O2- anions in the solid. We characterize the analogous defect reaction in an iodide double-perovskite semiconductor, Cs2SnI6. Here, I2 gas is released from the crystal at room temperature, forming iodine vacancies. The iodine vacancy defect is a shallow electron donor and is therefore ionized at room temperature; thus, the loss of I2 is accompanied by spontaneous n-type self-doping. Conversely, at high I2 pressures, I2 gas is resorbed by the perovskite, consuming excess electrons as I2 is converted to 2I-. Halide mobility and irreversible halide loss or exchange reactions have been studied extensively in halide perovskites. However, the reversible exchange equilibrium between iodide and iodine [2I-(s) ↔ I2(g) + 2e-] described here has often been overlooked in prior studies, though it is likely general to halide perovskites and operative near room temperature, even in the dark. An analysis of the 2I-(s)/I2(g) equilibrium thermodynamics and related transport kinetics in single crystals of Cs2SnI6 therefore provides insight toward achieving stable composition and electronic properties in the large family of iodide perovskite semiconductors.

2.
Chem Sci ; 14(42): 11858-11871, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920347

RESUMO

Recent investigations into the effects of dimensional reduction on halide double perovskites have revealed an intriguing change in band structure when the three-dimensional (3D) perovskite is reduced to a two-dimensional (2D) perovskite with inorganic sheets of monolayer thickness (n = 1). The indirect bandgap of 3D Cs2AgBiBr6 becomes direct in the n = 1 perovskite whereas the direct bandgap of 3D Cs2AgTlBr6 becomes indirect at the n = 1 limit. Here, we apply a linear combination of atomic orbitals approach to uncover the orbital basis for this bandgap symmetry transition with dimensional reduction. We adapt our previously established method for predicting band structures of 3D double perovskites for application to their 2D congeners, emphasizing new considerations required for the 2D lattice. In particular, we consider the inequivalence of the terminal and bridging halides and the consequences of applying translational symmetry only along two dimensions. The valence and conduction bands of the layered perovskites can be derived from symmetry adapted linear combinations of halide p orbitals propagated across the 2D lattice. The dispersion of each band is then determined by the bonding and antibonding interactions of the metal and halide orbitals, thus affording predictions of the essential features of the band structure. We demonstrate this analysis for 2D Ag-Bi and Ag-Tl perovskites with sheets of mono- and bilayer thickness, establishing a detailed understanding of their band structures, which enables us to identify the key factors that drive the bandgap symmetry transitions observed at the n = 1 limit. Importantly, these insights also allow us to make the general prediction that direct → indirect or indirect → direct bandgap transitions in the monolayer limit are most likely in double perovskite compositions that involve participation of metal d orbitals at the band edges or that have no metal-orbital contributions to the valence band, laying the groundwork for the targeted realization of this phenomenon.

3.
Nat Chem ; 15(12): 1780-1786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640854

RESUMO

Although Cu2+ is ubiquitous, the relativistic destabilization of the 5d orbitals makes the isoelectronic Au2+ exceedingly rare, typically stabilized only through Au-Au bonding or by using redox non-innocent ligands. Here we report the perovskite Cs4AuIIAuIII2Cl12, an extended solid with mononuclear Au2+ sites, which is stable to ambient conditions and characterized by single-crystal X-ray diffraction. The 2+ oxidation state of Au was assigned using 197Au Mössbauer spectroscopy, electron paramagnetic resonance, and magnetic susceptibility measurements, with comparison to paramagnetic and diamagnetic analogues with Cu2+ and Pd2+, respectively, as well as to density functional theory calculations. This gold perovskite offers an opportunity to study the optical and electronic transport of the uncommon Au2+/3+ mixed-valence state and the characteristics of the elusive Au2+ ion coordinated to simple ligands. Compared with the perovskite Cs2AuIAuIIICl6, which has been studied since the 1920s, Cs4AuIIAuIII2Cl12 exhibits a 0.7 eV reduction in optical absorption onset and a 103-fold increase in electronic conductivity.

5.
Angew Chem Int Ed Engl ; 62(20): e202300957, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36919236

RESUMO

The perovskite (BA)4 [CuII (CuI InIII )0.5 ]Cl8 (1BA ; BA+ =butylammonium) allows us to study the high-pressure structural, optical, and transport properties of a mixed-valence 2D perovskite. Compressing 1BA reduces the onset energy of CuI/II intervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of 1BA increases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuII perovskites achieve similar conductivity at ≈50 GPa. The solution-state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuII single perovskites and CuI InIII double perovskites.

6.
J Am Chem Soc ; 144(51): 23595-23602, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36534020

RESUMO

Low-dimensional metal halides exhibit strong structural and electronic anisotropies, making them candidates for accessing unusual electronic properties. Here, we demonstrate pressure-induced quasi-one-dimensional (quasi-1D) metallicity in δ-CsSnI3. With the application of pressure up to 40 GPa, the initially insulating δ-CsSnI3 transforms to a metallic state. Synchrotron X-ray diffraction and Raman spectroscopy indicate that the starting 1D chain structure of edge-sharing Sn-I octahedra in δ-CsSnI3 is maintained in the high-pressure metallic phase while the SnI6 octahedral chains are distorted. Our experiments combined with first-principles density functional theory calculations reveal that pressure induces Sn-Sn hybridization and enhances Sn-I coupling within the chain, leading to band gap closure and formation of conductive SnI6 distorted octahedral chains. In contrast, the interchain I...I interactions remain minimal, resulting in a highly anisotropic electronic structure and quasi-1D metallicity. Our study offers a high-pressure approach for achieving diverse electronic platforms in the broad family of low-dimensional metal halides.

7.
J Am Chem Soc ; 144(45): 20763-20772, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343332

RESUMO

Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriers─playing a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures on defects in halide perovskites has not been experimentally investigated. Here, we study the structural, optical, and electronic consequences of compressing the small-bandgap double perovskites Cs2AgTlX6 (X = Cl or Br) up to 56 GPa. Mild compression to 1.7 GPa increases the conductivity of Cs2AgTlBr6 by ca. 1 order of magnitude and decreases its bandgap from 0.94 to 0.7 eV. Subsequent compression yields complex optoelectronic behavior: the bandgap varies by 1.2 eV and conductivity ranges by a factor of 104. These conductivity changes cannot be explained by the evolving bandgap. Instead, they can be understood as tuning of the bromine vacancy defect with pressure─varying between a delocalized shallow defect state with a small ionization energy and a localized deep defect state with a large ionization energy. Activation energy measurements reveal that the shallow-to-deep defect transition occurs near 1.5 GPa, well before the cubic-to-tetragonal phase transition. An analysis of the orbital interactions in Cs2AgTlBr6 illustrates how the bromine vacancy weakens the adjacent Tl s-Br p antibonding interaction, driving the shallow-to-deep defect transition. Our orbital analysis leads us to propose that halogen vacancies are most likely to be shallow donors in halide double perovskites that have a conduction band derived from the octahedral metal's s orbitals.

8.
J Am Chem Soc ; 144(49): 22403-22408, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416496

RESUMO

Although sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS; +NH3(CH2)2S-), serves as both the X- site and A+ site in the ABX3 halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX2 (X- = Cl- or Br-). Notably, the band structures of (CYS)PbX2 capture the direct bandgaps and dispersive bands of APbX3 perovskites. The sulfur orbitals compose the top of the valence band in (CYS)PbX2, affording unusually small direct bandgaps of 2.31 and 2.16 eV for X- = Cl- and Br-, respectively, falling in the ideal range for the top absorber in a perovskite-based tandem solar cell. Measurements of the carrier dynamics in (CYS)PbCl2 suggest carrier trapping due to defects or lattice distortions. The highly desirable bandgaps, band dispersion, and improved stability of the organosulfide perovskites demonstrated here motivate the continued expansion and exploration of this new family of materials, particularly with respect to extracting photocurrent. Our strategy of combining the A+ and X- sites with zwitterions may offer more members in this family of mixed-anion 3D hybrid perovskites.


Assuntos
Compostos de Cálcio , Compostos Inorgânicos , Óxidos , Sulfetos
9.
Nat Commun ; 13(1): 7067, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400789

RESUMO

Electron-phonon coupling was believed to govern the carrier transport in halide perovskites and related phases. Here we demonstrate that electron-electron interaction enhanced by Cs-involved electron redistribution plays a direct and prominent role in the low-temperature electrical transport of compressed CsPbI3 and renders Fermi liquid (FL)-like behavior. By compressing δ-CsPbI3 to 80 GPa, an insulator-semimetal-metal transition occurs, concomitant with the completion of a slow structural transition from the one-dimensional Pnma (δ) phase to a three-dimensional Pmn21 (ε) phase. Deviation from FL behavior is observed upon CsPbI3 entering the metallic ε phase, which progressively evolves into a FL-like state at 186 GPa. First-principles density functional theory calculations reveal that the enhanced electron-electron coupling results from the sudden increase of the 5d state occupation in Cs and I atoms. Our study presents a promising strategy of cationic manipulation for tuning the electronic structure and carrier scattering of halide perovskites at high pressure.

10.
Chem Sci ; 13(34): 9973-9979, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36199633

RESUMO

The recent observation of broadband white-light emission from the inorganic sheets of certain layered lead-bromide perovskites has instigated a multitude of studies on this unusual phenomenon. However, the vast majority of layered bromide perovskites have flat (001) inorganic sheets and display a narrow photoluminescence at room temperature. A handful of heavily distorted (001) perovskites display broad emission, but to date, there is no method of predicting which perovskites will produce white light at room temperature prior to screening different organic molecules that can template 2D perovskites and crystallizing and analyzing the material. By studying ten Pb-Cl perovskites, we find that they all exhibit a broad yellow emission, which is strikingly invariant despite different distortions in the inorganic framework seen across the series. We postulate that this broad emission is intrinsic to all layered Pb-Cl perovskites. Although broad, the emission is not white. By adding Br to the Pb-Cl perovskites we obtain both the narrow emission and the broad emission such that the combined emission color smoothly varies from yellow to warm white to cold white as a function of the halide ratio. Thus, alloying Br to Pb-Cl perovskites appears to be a simple and general strategy for reliably obtaining white light at room temperature from (001) perovskites, regardless of the templating effects of the organic molecules, which should greatly expand the number of white-light-emitting layered perovskites.

11.
Angew Chem Int Ed Engl ; 61(25): e202202911, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35421260

RESUMO

As halide perovskites and their derivatives are being developed for numerous optoelectronic applications, controlling their electronic doping remains a fundamental challenge. Herein, we describe a novel strategy of using redox-active organic molecules as stoichiometric electron acceptors. The cavities in the new expanded perovskite analogs (dmpz)[Sn2 X6 ], (X=Br- (1Br) and I- (1I)) are occupied by dmpz2+ (N,N'-dimethylpyrazinium), with the LUMOs lying ca. 1 eV above the valence band maximum (VBM). Compressing the metal-halide framework drives up the VBM in 1I relative to the dmpz LUMO. The electronic conductivity increases by a factor of 105 with pressure, reaching 50(17) S cm-1 at 60 GPa, exceeding the high-pressure conductivities of most halide perovskites. This conductivity enhancement is attributed to an increased hole density created by dmpz2+ reduction. This work elevates the role of organic cations in 3D metal-halides, from templating the structure to serving as charge reservoirs for tuning the carrier concentration.

12.
Nature ; 597(7876): 355-359, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526708

RESUMO

The precise stacking of different two-dimensional (2D) structures such as graphene and MoS2 has reinvigorated the field of 2D materials, revealing exotic phenomena at their interfaces1,2. These unique interfaces are typically constructed using mechanical or deposition-based methods to build a heterostructure one monolayer at a time2,3. By contrast, self-assembly is a scalable technique, where complex materials can selectively form in solution4-6. Here we show a synthetic strategy for the self-assembly of layered perovskite-non-perovskite heterostructures into large single crystals in aqueous solution. Using bifunctional organic molecules as directing groups, we have isolated six layered heterostructures that form as an interleaving of perovskite slabs with a different inorganic lattice, previously unknown to crystallize with perovskites. In many cases, these intergrown lattices are 2D congeners of canonical inorganic structure types. To our knowledge, these compounds are the first layered perovskite heterostructures formed using organic templates and characterized by single-crystal X-ray diffraction. Notably, this interleaving of inorganic structures can markedly transform the band structure. Optical data and first principles calculations show that substantive coupling between perovskite and intergrowth layers leads to new electronic transitions distributed across both sublattices. Given the technological promise of halide perovskites4, this intuitive synthetic route sets a foundation for the directed synthesis of richly structured complex semiconductors that self-assemble in water.

13.
Chem Sci ; 12(25): 8689-8697, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257867

RESUMO

Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI 4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI-InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI-InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI-InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.

14.
J Am Chem Soc ; 143(19): 7440-7448, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33945275

RESUMO

The Cs8AuIII4MIIIX23 (M = In3+, Sb3+, Bi3+; X = Cl-, Br-, I-) perovskites are composed of corner-sharing Au-X octahedra that trace the edges of a cube containing an isolated M-X octahedron at its body center. This structure, unique within the halide perovskite family, may be derived from the doubled cubic perovskite unit cell by removing the metals at the cube faces. To our knowledge, these are the only halide perovskites where the octahedral sites do not bear an average 2+ charge. Charge compensation in these materials requires a stoichiometric halide vacancy, which is disordered around the Au atom at the unit-cell corner and orders when the crystallization is slowed. Using X-ray crystallography, X-ray absorption spectroscopy, and pair distribution function analysis, we elucidate the structure of this unusual perovskite. Metal-site alloying produces further intricacies in this structure, which our model explains. Compared to other halide perovskites, this class of materials shows unusually low absorption onset energies ranging between ca. 1.0 and 2.4 eV. Partial reduction of Au3+ to Au+ affords an intervalence charge-transfer band, which redshifts the absorption onset of Cs8Au4InCl23 from 2.4 to 1.5 eV. With connected Au-X octahedra and isolated M-X octahedra, this structure type combines zero- and three-dimensional metal-halide sublattices in a single material and stands out among halide perovskites for its ordering of homovalent metals, ordering of halide vacancies, and incorporation of purely trivalent metals at the octahedral sites.

15.
Angew Chem Int Ed Engl ; 60(30): 16264-16278, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33621383

RESUMO

When the stakes are doubled in a wager, a player must correctly place two consecutive bets to win, but the payout is larger. Similarly, two B sites in combination dictate the properties of A2 BB'X6 (A=monocation, X=halide) double perovskites. Correctly picking two B sites is more challenging than picking just one, as in the AI BII X3 single perovskites, but the options are greater and, we believe, the rewards are higher when the stakes are doubled. In this Minireview, we emphasize fundamental aspects of halide double perovskites to provide a foundation for interested readers to explore this extraordinary class of materials. In particular, we highlight the differences and similarities between double and single perovskites and describe how the double perovskite structure potentially offers greater control over photophysical properties.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Ligas/química , Complexos de Coordenação/química , Dimerização , Ferrocianetos/química , Estrutura Molecular , Relação Estrutura-Atividade , Termodinâmica , Elementos de Transição/química
16.
Nat Commun ; 12(1): 461, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469021

RESUMO

Functional CsPbI3 perovskite phases are not stable at ambient conditions and spontaneously convert to a non-perovskite δ phase, limiting their applications as solar cell materials. We demonstrate the preservation of a black CsPbI3 perovskite structure to room temperature by subjecting the δ phase to pressures of 0.1 - 0.6 GPa followed by heating and rapid cooling. Synchrotron X-ray diffraction and Raman spectroscopy indicate that this perovskite phase is consistent with orthorhombic γ-CsPbI3. Once formed, γ-CsPbI3 could be then retained after releasing pressure to ambient conditions and shows substantial stability at 35% relative humidity. First-principles density functional theory calculations indicate that compression directs the out-of-phase and in-phase tilt between the [PbI6]4- octahedra which in turn tune the energy difference between δ- and γ-CsPbI3, leading to the preservation of γ-CsPbI3. Here, we present a high-pressure strategy for manipulating the (meta)stability of halide perovskites for the synthesis of desirable phases with enhanced materials functionality.

17.
Nat Mater ; 20(5): 618-623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398119

RESUMO

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.

18.
J Phys Chem Lett ; 12(1): 532-536, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33377386

RESUMO

The halide double perovskite Cs2AgBiBr6 has emerged as a promising nontoxic alternative to the lead halide perovskites APbX3 (A = organic cation or Cs; X = I or Br). Here, we perform high-pressure synchrotron X-ray total scattering on Cs2AgBiBr6 and discover local disorder that is hidden from conventional Bragg analysis. While our powder diffraction data show that the average structure remains cubic up to 2.1 GPa, analysis of the X-ray pair distribution function reveals that the local structure is better described by a monoclinic space group, with significant distortion within the Ag-Br and Bi-Br octahedra and off-centering of the Cs atoms. By tracking the distribution of interatomic Cs-Br distances, we find that the local disorder is enhanced upon compression, and we corroborate these results with molecular dynamics simulations. The observed local disorder affords new understanding of this promising material and potentially offers a new parameter to tune in halide perovskite lattices.

19.
Chem Sci ; 11(29): 7708-7715, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874527

RESUMO

Quantum confinement effects in lower-dimensional derivatives of the ABX3 (A = monocation, X = halide) single perovskites afford striking optical and electronic changes, enabling applications ranging from solar absorbers to phosphors and light-emitting diodes. Halide double perovskites form a larger materials family, known since the late 1800s, but lower-dimensional derivatives remain rare and prior work has revealed a minimal effect of quantum confinement on their optical properties. Here, we synthesize three new lower-dimensional derivatives of the 3D double perovskite Cs2AgTlBr6: 2D derivatives with mono- (1-Tl) and bi-layer thick (2-Tl) inorganic sheets and a quasi-1D derivative (1'-Tl). Single-crystal ellipsometry studies of these materials show the first clear demonstration that dimensional reduction can significantly alter the optical properties of 2D halide double perovskites. This large quantum confinement effect is attributed to the substantial electronic delocalization of the parent 3D Ag-Tl perovskite. Calculations track the evolution of the electronic bands with dimensional reduction and the accompanying structural distortions and show a direct-to-indirect bandgap transition as the 3D perovskite lattice is thinned to a monolayer in 1-Tl. This bandgap transition at the monolayer limit is also evident in the calculations for 1-In, an isostructural, isoelectronic analogue to 1-Tl in which In3+ replaces Tl3+, underscoring the orbital basis for the direct/indirect nature of the bandgap. Thus, in complement to the massive compositional diversity of halide double perovskites, dimensional reduction may be used as a systematic route for harnessing electronic confinement effects and obtaining new electronic structures.

20.
J Am Chem Soc ; 142(39): 16622-16631, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32909430

RESUMO

The mechanism of white-light emission from layered Pb-X (X = Cl or Br) perovskites following UV excitation has generated considerable interest. Prior time-dependent studies indicated that the broadband photoluminescence (PL) from (110) perovskites arises from a distribution of self-trapped excitonic sites emitting in different regions of the visible spectrum with different decay dynamics. Here, using time-correlated single photon counting to study single crystals, we show that the white-light emission decay from the (110) perovskite (EDBE)PbBr4 (EDBE = 2,2'-(ethylenedioxy)bis(ethylammonium)) behaves as a single ensemble. Following the rapid decay (0.6 ns) of a small spectral side band, the broad emission line shape is constant to 100 ns. We propose that rapid local structural fluctuations cause the self-trapped excitons (STEs) to experience a wide range of energies, resulting in the very broad PL. The STEs sample fluctuating local environments on time scales fast compared to the PL, which averages the PL decay at all emission wavelengths, yielding single ensemble PL dynamics. Although emission occurs from a very wide, inhomogeneously broadened spectral line with time-averaged single ensemble luminescence dynamics, the decay is tri-exponential. Two heuristic models for the tri-exponential decay involving defects are discussed. Spin-coated films show faster non-exponential decays with the slowest component of the crystal PL absent. Like the crystals, the film PL decays as a single ensemble. These results demonstrate that the broadband emission decay of (EDBE)PbBr4 arises from a time-averaged single ensemble and not from a set of excited states emitting with distinct luminescence decays at different wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA