Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Death Differ ; 31(7): 881-896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802657

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.


Assuntos
Autofagia , Carcinoma Ductal Pancreático , Proteínas de Choque Térmico HSP70 , Dinâmica Mitocondrial , Neoplasias Pancreáticas , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Autofagia/efeitos dos fármacos , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/metabolismo
2.
Cell Rep ; 41(11): 111818, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516772

RESUMO

Oncogenic KRas activates mitochondrial fission through Erk-mediated phosphorylation of the mitochondrial fission GTPase Drp1. Drp1 deletion inhibits tumorigenesis of KRas-driven pancreatic cancer, but the role of mitochondrial dynamics in other Ras-driven malignancies is poorly defined. Here we show that in vitro and in vivo growth of KRas-driven lung adenocarcinoma is unaffected by deletion of Drp1 but is inhibited by deletion of Opa1, the GTPase that regulates inner membrane fusion and proper cristae morphology. Mechanistically, Opa1 knockout disrupts cristae morphology and inhibits electron transport chain (ETC) assembly and activity, which inhibits tumor cell proliferation through loss of NAD+ regeneration. Simultaneous inactivation of Drp1 and Opa1 restores cristae morphology, ETC activity, and cell proliferation indicating that mitochondrial fission activity drives ETC dysfunction induced by Opa1 knockout. Our results support a model in which mitochondrial fission events disrupt cristae structure, and tumor cells with hyperactive fission activity require Opa1 activity to maintain ETC function.


Assuntos
Adenocarcinoma de Pulmão , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Membranas Mitocondriais/metabolismo , Dinâmica Mitocondrial , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dinaminas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493662

RESUMO

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Mitocôndrias/patologia , Mitofagia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo
4.
Cell Rep ; 36(4): 109451, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320341

RESUMO

Lipid droplets (LDs) are dynamic organelles that undergo dynamic changes in response to changing cellular conditions. During nutrient depletion, LD numbers increase to protect cells against toxic fatty acids generated through autophagy and provide fuel for beta-oxidation. However, the precise mechanisms through which these changes are regulated have remained unclear. Here, we show that the small GTPase RalA acts downstream of autophagy to directly facilitate LD growth during nutrient depletion. Mechanistically, RalA performs this function through phospholipase D1 (PLD1), an enzyme that converts phosphatidylcholine (PC) to phosphatidic acid (PA) and that is recruited to lysosomes during nutrient stress in a RalA-dependent fashion. RalA inhibition prevents recruitment of the LD-associated protein perilipin 3, which is required for LD growth. Our data support a model in which RalA recruits PLD1 to lysosomes during nutrient deprivation to promote the localized production of PA and the recruitment of perilipin 3 to expanding LDs.


Assuntos
Gotículas Lipídicas/metabolismo , Nutrientes , Fosfolipase D/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Autofagia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Perilipina-3/metabolismo , Ácidos Fosfatídicos/metabolismo , Triglicerídeos/metabolismo
5.
Sci Rep ; 10(1): 18941, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144635

RESUMO

Mitochondria are highly dynamic organelles that can exhibit a wide range of morphologies. Mitochondrial morphology can differ significantly across cell types, reflecting different physiological needs, but can also change rapidly in response to stress or the activation of signaling pathways. Understanding both the cause and consequences of these morphological changes is critical to fully understanding how mitochondrial function contributes to both normal and pathological physiology. However, while robust and quantitative analysis of mitochondrial morphology has become increasingly accessible, there is a need for new tools to generate and analyze large data sets of mitochondrial images in high throughput. The generation of such datasets is critical to fully benefit from rapidly evolving methods in data science, such as neural networks, that have shown tremendous value in extracting novel biological insights and generating new hypotheses. Here we describe a set of three computational tools, Cell Catcher, Mito Catcher and MiA, that we have developed to extract extensive mitochondrial network data on a single-cell level from multi-cell fluorescence images. Cell Catcher automatically separates and isolates individual cells from multi-cell images; Mito Catcher uses the statistical distribution of pixel intensities across the mitochondrial network to detect and remove background noise from the cell and segment the mitochondrial network; MiA uses the binarized mitochondrial network to perform more than 100 mitochondria-level and cell-level morphometric measurements. To validate the utility of this set of tools, we generated a database of morphological features for 630 individual cells that encode 0, 1 or 2 alleles of the mitochondrial fission GTPase Drp1 and demonstrate that these mitochondrial data could be used to predict Drp1 genotype with 87% accuracy. Together, this suite of tools enables the high-throughput and automated collection of detailed and quantitative mitochondrial structural information at a single-cell level. Furthermore, the data generated with these tools, when combined with advanced data science approaches, can be used to generate novel biological insights.


Assuntos
Mitocôndrias/metabolismo , Software , Animais , Biologia Computacional , Humanos , Processamento de Imagem Assistida por Computador , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
FASEB J ; 34(6): 7687-7702, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277852

RESUMO

miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/fisiologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Doenças Musculares/genética
7.
Cell Rep ; 28(7): 1845-1859.e5, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412251

RESUMO

Mitochondria undergo fission and fusion to maintain homeostasis, and tumors exhibit the dysregulation of mitochondrial dynamics. We recently demonstrated that ectopic HRasG12V promotes mitochondrial fragmentation and tumor growth through Erk phosphorylation of the mitochondrial fission GTPase Dynamin-related protein 1 (Drp1). However, the role of Drp1 in the setting of endogenous oncogenic KRas remains unknown. Here, we show that Drp1 is required for KRas-driven anchorage-independent growth in fibroblasts and patient-derived pancreatic cancer cell lines, and it promotes glycolytic flux, in part through the regulation of hexokinase 2 (HK2). Furthermore, Drp1 deletion imparts a significant survival advantage in a model of KRas-driven pancreatic cancer, and tumors exhibit a strong selective pressure against complete Drp1 deletion. Rare tumors that arise in the absence of Drp1 have restored glycolysis but exhibit defective mitochondrial metabolism. This work demonstrates that Drp1 plays dual roles in KRas-driven tumor growth: supporting both glycolysis and mitochondrial function through independent mechanisms.


Assuntos
Dinaminas/metabolismo , Dinaminas/fisiologia , Mitocôndrias/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose , Proliferação de Células , Dinaminas/genética , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 14(4): e0214764, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30995277

RESUMO

Healthy mitochondria use an electrochemical gradient across the inner mitochondrial membrane (IMM) to generate energy in the form of ATP. A variety of endogenous and exogenous factors can lead to transient or sustained depolarization of the IMM, including mitochondrial fission events, expression of uncoupling proteins, electron transport chain (ETC) inhibitors, or chemical uncouplers. This depolarization in turn leads to a variety of physiological responses, ranging from selective mitochondrial clearance (mitophagy) to cell death. How cells recognize and ultimately respond to depolarized mitochondria remains incompletely understood. Here we show that the small GTPases RalA and RalB both relocalize to mitochondria following depolarization in a process dependent on clathrin-mediated endocytosis (CME). Furthermore, both genetic and pharmacologic inhibition of RalA and RalB leads to an increase in the activity of the atypical IκB kinase TBK1 both basally and in response to mitochondrial depolarization. This phenotype was also observed following inhibition of Ral relocalization. Collectively, these data suggest a model in which RalA and RalB inhibit TBK1 and that relocalization of Ral to depolarized mitochondria facilitates TBK1 activation through release of this inhibition.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Transporte Proteico , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Proteínas ral de Ligação ao GTP/genética
9.
Mitochondrion ; 44: 20-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274400

RESUMO

Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken ß-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.


Assuntos
Genes Reporter , Mitocôndrias/patologia , Mitofagia , Estresse Oxidativo , Animais , Cloranfenicol O-Acetiltransferase/análise , Cloranfenicol O-Acetiltransferase/genética , Modelos Animais de Doenças , Expressão Gênica , Isquemia/patologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/patologia , Regiões Promotoras Genéticas
10.
Anal Chem ; 89(11): 5757-5764, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28475301

RESUMO

Mitochondrial dynamics play an important role within several pathological conditions, including cancer and neurological diseases. For the purpose of identifying therapies that target aberrant regulation of the mitochondrial dynamics machinery and characterizing the regulating signaling pathways, there is a need for label-free means to detect the dynamic alterations in mitochondrial morphology. We present the use of dielectrophoresis for label-free quantification of intracellular mitochondrial modifications that alter cytoplasmic conductivity, and these changes are benchmarked against label-based image analysis of the mitochondrial network. This is validated by quantifying the mitochondrial alterations that are carried out by entirely independent means on two different cell lines: human embryonic kidney cells and mouse embryonic fibroblasts. In both cell lines, the inhibition of mitochondrial fission that leads to a mitochondrial structure of higher connectivity is shown to substantially enhance conductivity of the cell interior, as apparent from the significantly higher positive dielectrophoresis levels in the 0.5-15 MHz range. Using single-cell velocity tracking, we show ∼10-fold higher positive dielectrophoresis levels at 0.5 MHz for cells with a highly connected versus those with a highly fragmented mitochondrial structure, suggesting the feasibility for frequency-selective dielectrophoretic isolation of cells to aid the discovery process for development of therapeutics targeting the mitochondrial machinery.


Assuntos
Eletroforese/métodos , Dinâmica Mitocondrial/fisiologia , Animais , Linhagem Celular , Separação Celular/métodos , Rastreamento de Células , Técnicas e Procedimentos Diagnósticos , Humanos , Camundongos , Mitocôndrias/patologia , Transdução de Sinais
11.
Mol Cell ; 57(3): 537-51, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25658205

RESUMO

Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Dinaminas , GTP Fosfo-Hidrolases/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/genética , Neoplasias Experimentais/metabolismo , Fosforilação , Serina/metabolismo , Proteínas ras/metabolismo
12.
J Med Chem ; 56(11): 4729-37, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23656296

RESUMO

REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (1) for potency, selectivity, and bioavailability. (1) Potent REV-ERBα agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine 4 demonstrated in vivo bioavailability after either iv or oral dosing.


Assuntos
Aminas/síntese química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Aminas/química , Aminas/farmacologia , Animais , Disponibilidade Biológica , Proteínas de Transporte/metabolismo , Linhagem Celular , Ritmo Circadiano , Glicina/análogos & derivados , Glicina/síntese química , Glicina/química , Glicina/farmacologia , Humanos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA , Ensaio Radioligante , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia
13.
J Med Chem ; 55(24): 10972-94, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23214471

RESUMO

GPR119 is a 7-transmembrane receptor that is expressed in the enteroendocrine cells in the intestine and in the islets of Langerhans in the pancreas. Indolines and 6,7-dihydro-5H-pyrrolo[2,3-a]pyrimidines were discovered as G protein-coupled receptor 119 (GPR119) agonists, and lead optimization efforts led to the identification of 1-methylethyl 4-({7-[2-fluoro-4-(methylsulfonyl)phenyl]-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)-1-piperidinecarboxylate (GSK1104252A) (3), a potent and selective GPR119 agonist. Compound 3 showed excellent pharmacokinetic properties and sufficient selectivity with in vivo studies supporting a role for GPR119 in glucose homeostasis in the rodent. Thus, 3 appeared to modulate the enteroinsular axis, improve glycemic control, and strengthen previous suggestions that GPR119 agonists may have utility in the treatment of type 2 diabetes.


Assuntos
Hipoglicemiantes/síntese química , Piperidinas/síntese química , Pirimidinas/síntese química , Pirróis/síntese química , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Animais , Linhagem Celular , Colo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Incretinas/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacocinética , Piperidinas/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade
14.
PPAR Res ; 2011: 179454, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22013433

RESUMO

Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O(2) consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA