Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802039

RESUMO

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Assuntos
Encéfalo , Organoides , Humanos , Diferenciação Celular , Análise de Sequência de RNA
3.
Cell Rep ; 37(1): 109775, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610312

RESUMO

Motile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Epêndima/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Encéfalo/citologia , Encéfalo/patologia , Linhagem da Célula , Líquido Cefalorraquidiano/fisiologia , Cílios/patologia , Embrião não Mamífero/metabolismo , Epêndima/citologia , Epêndima/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Edição de Genes , Morfogênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo , Telencéfalo/patologia , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Neuroinformatics ; 19(4): 737-750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374965

RESUMO

Synaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. To interrogate synapse function in a systematic manner, we have established an automated high-throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular value decomposition. By exploiting the synchronicity of the evoked responses, the algorithm allows disentangling distinct temporally correlated patterns of firing synapse populations or cell types that are present in the same recording. We demonstrate the performance of the analysis with a pilot compound screen and show that the multiparametric readout allows classifying treatments by their spatiotemporal fingerprint. The image analysis and visualization software has been made publicly available on Github ( https://www.github.com/S3Toolbox ). The streamlined automation of multi-well image acquisition, electrical stimulation, analysis, and meta-data warehousing facilitates large-scale synapse-oriented screens and, in doing so, it will accelerate the drug discovery process.


Assuntos
Neurônios , Sinapses , Algoritmos , Processamento de Imagem Assistida por Computador , Software
5.
Front Neurosci ; 12: 389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997468

RESUMO

Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.

6.
Zebrafish ; 14(3): 284-286, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28027028

RESUMO

Glutamate is the major excitatory neurotransmitter in the brain. Its release and eventual recycling are key to rapid sustained neural activity. We have paired the gfap promoter region with the glutamate reporter molecule, iGluSnFR, to drive expression in glial cells throughout the nervous system. Tg(gfap:iGluSnFR) is expressed on the glial membrane of Müller glia cells in the retina, which rapidly respond to stimulation and the release of extracellular glutamate. As glial cells are associated with most, if not all, synapses, Tg(gfap:iGluSnFR) is a novel and exciting tool to measure neuronal activity and extracellular glutamate dynamics in many regions of the nervous system.


Assuntos
Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Sistema Nervoso/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Regulação da Expressão Gênica , Sistema Nervoso/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Regiões Promotoras Genéticas , Retina/citologia , Retina/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
7.
EMBO J ; 34(3): 379-92, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25535245

RESUMO

Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Quimiotaxia/fisiologia , Evolução Molecular , Potenciais da Membrana/fisiologia , Ouriços-do-Mar/metabolismo , Animais , Canais de Cálcio/genética , Masculino , Ouriços-do-Mar/genética
8.
J Cell Biol ; 198(6): 1075-91, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22986497

RESUMO

Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca(2+) oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2-0.6 s before a Ca(2+) response was produced. Additional molecules delivered during a Ca(2+) response reset the cell by causing a pronounced Ca(2+) drop that terminated the response; this reset was followed by a new Ca(2+) rise. After stimulation, sperm adapted their sensitivity following the Weber-Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well.


Assuntos
Ouriços-do-Mar/fisiologia , Espermatozoides/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Fatores Quimiotáticos/metabolismo , Limiar Diferencial/fisiologia , Masculino , Ouriços-do-Mar/metabolismo , Transdução de Sinais , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
9.
J Cell Biol ; 196(5): 653-63, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22371558

RESUMO

During chemotaxis and phototaxis, sperm, algae, marine zooplankton, and other microswimmers move on helical paths or drifting circles by rhythmically bending cell protrusions called motile cilia or flagella. Sperm of marine invertebrates navigate in a chemoattractant gradient by adjusting the flagellar waveform and, thereby, the swimming path. The waveform is periodically modulated by Ca(2+) oscillations. How Ca(2+) signals elicit steering responses and shape the path is unknown. We unveil the signal transfer between the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) and path curvature (κ). We show that κ is modulated by the time derivative d[Ca(2+)](i)/dt rather than the absolute [Ca(2+)](i). Furthermore, simulation of swimming paths using various Ca(2+) waveforms reproduces the wealth of swimming paths observed for sperm of marine invertebrates. We propose a cellular mechanism for a chemical differentiator that computes a time derivative. The cytoskeleton of cilia, the axoneme, is highly conserved. Thus, motile ciliated cells in general might use a similar cellular computation to translate changes of [Ca(2+)](i) into motion.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Quimiotaxia/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Flagelos/fisiologia , Masculino , Modelos Teóricos , Ácido Niflúmico/farmacologia , Ouriços-do-Mar/citologia , Ouriços-do-Mar/fisiologia , Espermatozoides/efeitos dos fármacos
10.
EMBO J ; 31(7): 1654-65, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22354039

RESUMO

The sperm-specific CatSper channel controls the intracellular Ca(2+) concentration ([Ca(2+)](i)) and, thereby, the swimming behaviour of sperm. In humans, CatSper is directly activated by progesterone and prostaglandins-female factors that stimulate Ca(2+) influx. Other factors including neurotransmitters, chemokines, and odorants also affect sperm function by changing [Ca(2+)](i). Several ligands, notably odorants, have been proposed to control Ca(2+) entry and motility via G protein-coupled receptors (GPCRs) and cAMP-signalling pathways. Here, we show that odorants directly activate CatSper without involving GPCRs and cAMP. Moreover, membrane-permeable analogues of cyclic nucleotides that have been frequently used to study cAMP-mediated Ca(2+) signalling also activate CatSper directly via an extracellular site. Thus, CatSper or associated protein(s) harbour promiscuous binding sites that can host various ligands. These results contest current concepts of Ca(2+) signalling by GPCR and cAMP in mammalian sperm: ligands thought to activate metabotropic pathways, in fact, act via a common ionotropic mechanism. We propose that the CatSper channel complex serves as a polymodal sensor for multiple chemical cues that assist sperm during their voyage across the female genital tract.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feromônios/metabolismo , Espermatozoides/metabolismo , Aldeídos/farmacologia , Benzimidazóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , AMP Cíclico/metabolismo , Ciclopropanos/farmacologia , Humanos , Masculino , Mibefradil/farmacologia , Naftalenos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Espermatozoides/efeitos dos fármacos
11.
Nature ; 471(7338): 382-6, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21412338

RESUMO

In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca(2+) increase by a non-genomic mechanism. The Ca(2+) signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm. However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca(2+) channel. We found that both progesterone and alkaline pH stimulate a rapid Ca(2+) influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca(2+) signals evoked by alkaline pH and progesterone are inhibited by the Ca(v) channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca(2+) channels. Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca(2+) signalling in sperm and help to define further the physiological role of progesterone and CatSper.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Progesterona/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Alprostadil/farmacologia , Benzimidazóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , AMP Cíclico , Ciclopropanos/farmacologia , Condutividade Elétrica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mibefradil/farmacologia , Naftalenos/farmacologia , Técnicas de Patch-Clamp , Progesterona/metabolismo
12.
J Am Chem Soc ; 131(11): 4027-30, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19256499

RESUMO

Ketalization of the biomolecule progesterone with (6-bromo-7-hydroxycoumarin-4-yl)ethane-1,2-diol gives the photolabile progesterone derivatives 3 and 4. These compounds display dramatically reduced bioactivity and release progesterone upon irradiation with UV/vis or IR light. In particular, 4 can be used to perform concentration-jump experiments with high temporal and spatial resolution that allows one to study elegantly the mechanisms of rapid nongenomic cellular events evoked by progesterone. The usefulness of 4 was demonstrated by measurement of changes in swimming behavior of single human sperm caused by progesterone-induced Ca(2+) influx in the sperm flagellum.


Assuntos
Processos Fotoquímicos , Progesterona/análogos & derivados , Progesterona/farmacologia , Álcoois , Cálcio/metabolismo , Flagelos/efeitos dos fármacos , Humanos , Luz , Masculino , Progesterona/química , Progesterona/efeitos da radiação , Projetos de Pesquisa , Espermatozoides/efeitos dos fármacos
13.
Annu Rev Physiol ; 70: 93-117, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17988206

RESUMO

Sperm are attracted by chemical factors that are released by the egg-a process called chemotaxis. Most of our knowledge on sperm chemotaxis originates from the study of marine invertebrates. In recent years, the main features of the chemotactic signaling pathway and the swimming behavior evoked by chemoattractants have been elucidated in sea urchins. In contrast, our understanding of mammalian sperm chemotaxis is still rudimentary and subject to an ongoing debate. In this review, we raise new questions and discuss current concepts of sperm chemotaxis. Finally, we highlight commonalities and differences of sensory signaling in sperm, photoreceptors, and olfactory neurons.


Assuntos
Quimiotaxia/fisiologia , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA