RESUMO
OBJECTIVE: Cochlear implants (CI) provide users with a spectrally degraded acoustic signal that could impact their auditory emotional experiences. This study evaluated the effects of CI-simulated spectral degradation on emotional valence and arousal elicited by environmental sounds. DESIGN: Thirty emotionally evocative sounds were filtered through a noise-band vocoder. Participants rated the perceived valence and arousal elicited by each of the full-spectrum and vocoded stimuli. These ratings were compared across acoustic conditions (full-spectrum, vocoded) and as a function of stimulus type (unpleasant, neutral, pleasant). STUDY SAMPLE: Twenty-five young adults (age 19 to 34 years) with normal hearing. RESULTS: Emotional responses were less extreme for spectrally degraded (i.e., vocoded) sounds than for full-spectrum sounds. Specifically, spectrally degraded stimuli were perceived as more negative and less arousing than full-spectrum stimuli. CONCLUSION: By meticulously replicating CI spectral degradation while controlling for variables that are confounded within CI users, these findings indicate that CI spectral degradation can compress the range of sound-induced emotion independent of hearing loss and other idiosyncratic device- or person-level variables. Future work will characterize emotional reactions to sound in CI users via objective, psychoacoustic, and subjective measures.
RESUMO
Pain hyperacusis, also known as noxacusis, causes physical pain in response to everyday sounds that do not bother most people. How sound causes excruciating pain that can last for weeks or months in otherwise healthy individuals is not well understood, resulting in a lack of effective treatments. To address this gap, we identified the most salient physical and psychosocial consequences of debilitating sound-induced pain and reviewed the interventions that sufferers have sought for pain relief to gain insights into the underlying mechanisms of the condition. Adults (n = 32) with pain hyperacusis attended a virtual focus group to describe their sound-induced pain. They completed three surveys to identify common symptoms and themes that defined their condition and to describe their use of pharmaceutical and non-pharmaceutical therapies for pain relief. All participants endorsed negative effects of pain hyperacusis on psychosocial and physical function. Most reported sound-induced burning (80.77%), stabbing (76.92%), throbbing (73.08%), and pinching (53.85%) that occurs either in the ear or elsewhere in the body (i.e., referred pain). Participants reported using numerous pharmaceutical and non-pharmaceutical interventions to alleviate their pain with varying degrees of pain relief. Benzodiazepines and nerve blockers emerged as the most effective analgesic options while non-pharmaceutical therapies were largely ineffective. Symptoms of pain hyperacusis and therapeutic approaches are largely consistent with peripheral mechanistic theories of pain hyperacusis (e.g., trigeminal nerve involvement). An interdisciplinary approach to clinical studies and the development of animal models is needed to identify, validate, and treat the pathological mechanisms of pain hyperacusis.