Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116432, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861810

RESUMO

Haptic technology permeates diverse fields and is receiving renewed attention for VR and AR applications. Advances in flexible electronics, facilitate the integration of haptic technologies into soft wearable systems, however, because of small footprint requirements face challenges of operational time requiring either large batteries, wired connections or frequent recharge, restricting the utility of haptic devices to short-duration tasks or low duty cycles, prohibiting continuously assisting applications. Currently many chronic applications are not investigated because of this technological gap. Here, we address wireless power and operation challenges with a biosymbiotic approach enabling continuous operation without user intervention, facilitated by wireless power transfer, eliminating the need for large batteries, and offering long-term haptic feedback without adhesive attachment to the body. These capabilities enable haptic feedback for robotic surgery training and posture correction over weeks of use with neural net computation. The demonstrations showcase that this device class expands use beyond conventional brick and strap or epidermally attached devices enabling new fields of use for imperceptible therapeutic and assistive haptic technologies supporting care and disease management.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Tato , Interface Usuário-Computador , Retroalimentação Sensorial , Tecnologia sem Fio , Procedimentos Cirúrgicos Robóticos/instrumentação , Robótica/instrumentação
2.
Chem Rev ; 124(5): 2205-2280, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382030

RESUMO

Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.


Assuntos
Fontes de Energia Elétrica , Tecnologia sem Fio , Próteses e Implantes , Eletrônica
3.
Nat Commun ; 12(1): 6707, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795247

RESUMO

Bioelectronic interfaces have been extensively investigated in recent years and advances in technology derived from these tools, such as soft and ultrathin sensors, now offer the opportunity to interface with parts of the body that were largely unexplored due to the lack of suitable tools. The musculoskeletal system is an understudied area where these new technologies can result in advanced capabilities. Bones as a sensor and stimulation location offer tremendous advantages for chronic biointerfaces because devices can be permanently bonded and provide stable optical, electromagnetic, and mechanical impedance over the course of years. Here we introduce a new class of wireless battery-free devices, named osseosurface electronics, which feature soft mechanics, ultra-thin form factor and miniaturized multimodal biointerfaces comprised of sensors and optoelectronics directly adhered to the surface of the bone. Potential of this fully implanted device class is demonstrated via real-time recording of bone strain, millikelvin resolution thermography and delivery of optical stimulation in freely-moving small animal models. Battery-free device architecture, direct growth to the bone via surface engineered calcium phosphate ceramic particles, demonstration of operation in deep tissue in large animal models and readout with a smartphone highlight suitable characteristics for exploratory research and utility as a diagnostic and therapeutic platform.


Assuntos
Fontes de Energia Elétrica , Fenômenos Eletromagnéticos , Eletrônica/instrumentação , Fenômenos Fisiológicos Musculoesqueléticos , Termografia/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Eletrônica/métodos , Masculino , Microscopia Eletrônica de Varredura , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/ultraestrutura , Redes Neurais de Computação , Ratos Sprague-Dawley , Estresse Mecânico , Termografia/métodos , Microtomografia por Raio-X/métodos
4.
Sci Adv ; 7(41): eabj3269, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623919

RESUMO

Digital medicine, the ability to stream continuous information from the body to gain insight into health status, manage disease, and predict onset health problems, is only gradually developing. Key technological hurdles that slow the proliferation of this approach are means by which clinical grade biosignals are continuously obtained without frequent user interaction. To overcome these hurdles, solutions in power supply and interface strategies that maintain high-fidelity readouts chronically are critical. This work introduces a previously unexplored class of devices that overcomes the limitations using digital manufacturing to tailor geometry, mechanics, electromagnetics, electronics, and fluidics to create unique personalized devices optimized to the wearer. These elastomeric, three-dimensional printed, and laser-structured constructs, called biosymbiotic devices, enable adhesive-free interfaces and the inclusion of high-performance, far-field energy harvesting to facilitate continuous wireless and battery-free operation of multimodal and multidevice, high-fidelity biosensing in an at-home setting without user interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA