Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 246(5): 584-595, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33148011

RESUMO

Transcriptomics in Parkinson's disease offers insights into the pathogenesis of Parkinson's disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile and compare differentially expressed genes and enriched pathways (KEGG) in two peripheral tissues (blood and skin) of 12 Parkinson's disease patients and 12 healthy controls using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare our results to previous Parkinson's disease post mortem brain tissue and blood results using the robust rank aggregation method. The results show no overlapping differentially expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068 differentially expressed genes with an FDR ≤ 0.05; 1 vs. 9 pathways in blood and skin, respectively). A meta-analysis from previous transcriptomic sample sets using either microarrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially expressed genes and a list of blood changes with 1 differentially expressed gene being statistically significant at FDR ≤ 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson's disease. Simultaneously, it explores the notion that Parkinson's disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison of different Parkinson's disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much transcriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson's disease-specific changes in non-neuronal peripheral tissues in Parkinson's disease, indicating that Parkinson's disease might be a multisystem disorder.


Assuntos
Perfilação da Expressão Gênica , Doença de Parkinson/genética , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Transdução de Sinais/genética , Pele/patologia
2.
Sci Rep ; 9(1): 4369, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867520

RESUMO

Repetitive elements (RE) constitute the majority of the human genome and have a range of functions both structural and regulatory on genomic function and gene expression. RE overexpression has been observed in several neurodegenerative diseases, consistent with the observation of aberrant expression of RE posing a mutagenic threat. Despite reports that associate RE expression with PD no study has comprehensively analysed the role of these elements in the disease. This study presents the first genome-wide analysis of RE expression in PD to date. Analysis of RNA-sequencing data of 12 PD patients and 12 healthy controls identified tissue-specific expression differences and more significantly, differential expression of four satellite elements; two simple satellite III (repName = CATTC_n and _GAATG_n) a high-copy satellite II (HSATII) and a centromeric satellite (ALR_Alpha) in the blood of PD patients. In support of the growing body of recent evidence associating REs with neurodegenerative disease, this study highlights the potential importance of characterization of RE expression in such diseases.


Assuntos
DNA Satélite , Regulação da Expressão Gênica , Doença de Parkinson/sangue , Doença de Parkinson/genética , Sequências Repetitivas de Ácido Nucleico , Pele/metabolismo , Estudos de Casos e Controles , Genoma Humano , Genômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA