Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 4(12): eaat9331, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30539143

RESUMO

Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of - 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states.

2.
Nat Commun ; 9(1): 4742, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413691

RESUMO

Controlling the directivity of emission and absorption at the nanoscale holds great promise for improving the performance of optoelectronic devices. Previously, directive structures have largely been centered in two categories-nanoscale antennas, and classical lenses. Herein, we utilize an evolutionary algorithm to design 3D dielectric nanophotonic lens structures leveraging both the interference-based control of antennas and the broadband operation of lenses. By sculpting the dielectric environment around an emitter, these nanolenses achieve directivities of 101 for point-sources, and 67 for finite-source nanowire emitters; 3× greater than that of a traditional spherical lens with nearly constant performance over a 200 nm wavelength range. The nanolenses are experimentally fabricated on GaAs nanowires, and characterized via photoluminescence Fourier microscopy, with an observed beaming half-angle of 3.5° and a measured directivity of 22. Simulations attribute the main limitation in the obtained directivity to imperfect alignment of the nanolens to the nanowire beneath.

3.
Opt Lett ; 43(11): 2547-2550, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856426

RESUMO

Plasmonic optical circuits hold great promise in reducing device footprints by orders of magnitude and enabling high device complexity. The decomposition of an arbitrary linear transformation using unitary beam splitters is well-known. However, because of the inherent lossy nature of plasmonic devices, this decomposition is not useful for the practical design of devices. In this Letter, we provide a method to design an arbitrary unitary transformation using plasmonic beam splitters, which takes into account the inherent lossy nature of plasmonic modes in the decomposition process itself, while preserving the fidelity of the transformation. We do this by selecting the loss in each arm of the beam splitters and the interconnects. We also show how this method can be extended for the case of any linear transformation by extending the singular value decomposition. This method is applicable to plasmonic and waveguide-based lossy beam splitters.

4.
Light Sci Appl ; 7: 17143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839635

RESUMO

Integrated photonics is a leading platform for quantum technologies including nonclassical state generation1, 2, 3, 4, demonstration of quantum computational complexity5 and secure quantum communications6. As photonic circuits grow in complexity, full quantum tomography becomes impractical, and therefore an efficient method for their characterization7, 8 is essential. Here we propose and demonstrate a fast, reliable method for reconstructing the two-photon state produced by an arbitrary quadratically nonlinear optical circuit. By establishing a rigorous correspondence between the generated quantum state and classical sum-frequency generation measurements from laser light, we overcome the limitations of previous approaches for lossy multi-mode devices9, 10. We applied this protocol to a multi-channel nonlinear waveguide network and measured a 99.28±0.31% fidelity between classical and quantum characterization. This technique enables fast and precise evaluation of nonlinear quantum photonic networks, a crucial step towards complex, large-scale, device production.

5.
Rev Sci Instrum ; 87(5): 054709, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250453

RESUMO

Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

6.
Opt Express ; 23(2): 1748-56, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835930

RESUMO

An anisotropic model for the fabrication of annealed and reverse proton exchange waveguides in lithium niobate is presented. We characterized the anisotropic diffusion properties of proton exchange, annealing and reverse proton exchange in Z-cut and X-cut substrates using planar waveguides. Using this model we fabricated high quality channel waveguides with propagation losses as low as 0.086 dB/cm and a coupling efficiency with optical fiber of 90% at 1550 nm. The splitting ratio of a set of directional couplers is predicted with an accuracy of ± 0.06.

7.
Sci Rep ; 4: 5257, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24918659

RESUMO

Plasmonic quasicrystals (PlQCs), by integrating the properties of quasicrystals (rotational symmetry and long range ordering but lack translational symmetry) and surface plasmon polariton mediated effects, offer several advantages over plasmonic crystals (PlCs). For example, in PlQCs one could have broadband, polarization independent response. However, large area patterning by electron beam lithography requires precise lattice coordinates as well as a practical way to design the structures for specific spectral response. We demonstrate design and fabrication of large area quasicrystal air hole patterns of π/5 symmetry in metal film in which broadband, polarization and launch angle independent transmission enhancement is observed. We demonstrate bi-grating quasicrystals to show that designable transmission response is possible over visible to near infrared wavelength regions with about 15 times enhancement. These would be useful in many applications like energy harvesting, nonlinear optics and quantum plasmonics.

8.
Opt Express ; 21(11): 13187-92, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736572

RESUMO

We show anti-crossings due to strong in-plane coupling of grating excited propagating plasmon modes in dielectric-metal-dielectric structure with 2D dielectric pattern on top. Grating coupled propagating plasmon modes along with their complete dispersion in the measurement range and all different sample orientations are calculated first. Further a coupled mode theory is presented for the specific geometry presented here. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes and thus the anti-crossing width can be controlled by the orientation of the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA