Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; : 124886, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39477136

RESUMO

Even though the spring and parachute approach for poorly water-soluble drug candidates effectively improves their dissolution curves with eutectic mixtures, deep eutectic solvents, solid dispersion polymers, and solid solutions, we cannot consider that its enabling factor in these pharmaceutical modifications was enough to be clarified. Based on our previous study that oxybuprocaine acts as a role of parachute generator for piroxicam, the present study explored a small-molecule parachute generator and found that propranolol, a ß-adrenergic-blocking drug, has a parachute effect on the supersaturated state of piroxicam. In addition, changing the concentration of tetracaine and dibucaine to 10 mM and 2.5 mM also showed a parachute effect. These parachute generators control piroxicam's dissolved state kinetically by making the supersaturated state of piroxicam a steady state. However, as the piroxicam anhydrous crystals diminished and the piroxicam monohydrate crystals grew due to Ostwald ripening, it led to attenuating the supersaturated state. This finding advances the elucidation of the mechanism of the parachute effect of polymers.

2.
Mol Pharm ; 21(9): 4524-4540, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39109552

RESUMO

Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.


Assuntos
Cafeína , Varredura Diferencial de Calorimetria , Ibuprofeno , Pós , Solubilidade , Difração de Raios X , Cafeína/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ibuprofeno/química , Varredura Diferencial de Calorimetria/métodos , Pós/química , Difração de Raios X/métodos , Teofilina/química , Cromatografia Líquida de Alta Pressão/métodos , Teobromina/química , Diclofenaco/química , Xantina/química
3.
RSC Adv ; 14(6): 4129-4141, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38292264

RESUMO

The thermodynamic properties and dissolution of indomethacin (INM) were analyzed as models for poorly water-soluble drugs. Physical mixtures of the most stable γ-form and metastable α-form of INM at various proportions were prepared, and their individual signal intensities proportional to their mole fractions were observed using X-ray powder diffraction and Fourier transform infrared spectrometry at standard temperature. The endothermic signals of the α-form, with a melting point of 426 K, and that of the γ-form, with a melting point of 433 K, were obtained by differential scanning calorimetry (DSC). Furthermore, an exothermic DSC peak of the α/γ-phase transition at approximately 428 K was obtained. As we computed the melting entropy of the α-form and that of its transformation, the frequency of the transition was quantitatively determined, which indicated the maximum of the α/γ-phase transition at an α-form proportion of 68%. Subsequently, the thermodynamic contributions of the α- and γ-forms were analyzed using a Van't Hoff plot for solubility in aqueous solutions at pH 6.8. The dissolution enthalpies for α- and γ-forms were 28.2 and 31.2 kJ mol-1, respectively, which are in agreement with the quantitative contribution predicted by the product of the temperature and melting entropy. The contribution of melting entropy was conserved in different dissolution processes with aqueous solvents containing lidocaine, diltiazem, l-carnosine, and aspartame as solubilizers; their γ-form Setschenow coefficients were -39.6, +82.9, -17.3, and +23.2, whereas those of the α-form were -39.7, +80.4, -16.7, and +22.7, respectively. We conclude that the dissolution ability of the solid state and solubilizers indicate their additivity independently.

4.
Chem Pharm Bull (Tokyo) ; 70(2): 120-129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110432

RESUMO

Certain combinations of acidic and basic drugs can cause significant changes in physicochemical properties through the formation of ionic liquids, eutectic mixtures, or deep eutectic solvents. In particular, combining indomethacin and lidocaine is known to result in apparent increases in both the partition coefficients (hydrophobicity) and aqueous solubilities (hydrophilicity). The physicochemical interactions between drugs change the water solubility of the drugs and affect the bio-availability of active pharmaceutical ingredients. Therefore, we need to clarify the mechanism of changes of water solubility of drugs through the physicochemical interactions. In the present study, we identified a thermodynamic factor that regulates the dissolution of a basic drug, in the presence of various acidic nonsteroidal anti-inflammatory drugs. The results demonstrated that enthalpy-entropy compensation plays a key role in the dissolution of drug mixtures and that relevant thermodynamic conditions should be considered.


Assuntos
Anti-Inflamatórios não Esteroides/química , Diltiazem/química , Termodinâmica , Estrutura Molecular , Solubilidade , Água/química
5.
J Pharm Sci ; 106(10): 3016-3021, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28419826

RESUMO

Eutectic mixtures are often used in the design and delivery of drugs. In this study, we examined the peritectic mixture of lidocaine (LDC) and ibuprofen (IBP) using differential scanning calorimetry, Raman spectroscopy, and microscopy. The obtained phase diagram showed that as the mixture was heated, first LDC melted at 293 K, then IBP dissolved in the liquefied LDC at 310 K, and finally all remaining crystals melted. In the 1H NMR spectra, the signals of the carboxyl group in IBP and amide or amine group in LDC shifted to the low magnetic field in the IBP/LDC mixtures, because of the intermolecular interaction between these moieties. Using FTIR spectroscopy, the kinetic "reaction" order of the melting process in the mixtures with excess LDC, equimolar, and excess IBP was determined to be +1/2, -1/2, and 0, respectively. The 2 contacts between the liquidus line and the higher melting line at 310 K at IBP molar fractions of 1/3 and of 2/3 were explained on the basis of the site percolation theory.


Assuntos
Ibuprofeno/química , Lidocaína/química , Varredura Diferencial de Calorimetria/métodos , Temperatura Alta , Cinética , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA