Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 174: 107893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058973

RESUMO

The impact of low-dose-rate radiation on genetics is largely unknown, particularly in natural environments. The Fukushima Dai-ich Nuclear Power Plant disaster resulted in the creation of contaminated natural lands. In this study, de novo mutations (DNMs) in germ line cells were surveyed from double-digest RADseq fragments in Japanese cedar and flowering cherry trees exposed to ambient dose rates ranging from 0.08 to 6.86 µGy h-1. These two species are among the most widely cultivated Japanese gymnosperm and angiosperm trees for forestry and horticultural purpose, respectively. For Japanese flowering cherry, open crossings were performed to produce seedlings, and only two candidate DNMs were detected from uncontaminated area. For Japanese cedar, the haploid megagametophytes were used as next generation samples. The use of megagametophytes from open crossing for next generation mutation screening had many advantages such as reducing exposure to radiation in contaminated areas because artificial crossings are not needed and the ease of data analysis owing to the haploid nature of megagametophytes. A direct comparison of the nucleotide sequences of parents and megagametophytes revealed an average of 1.4 candidate DNMs per megagametophyte sample (range: 0-40) after filtering procedures were optimized based on the validation of DNMs via Sanger sequencing. There was no relationship between the observed mutations and the ambient dose rate in the growing area or the concentration of 137Cs in cedar branches. The present results also suggest that mutation rates differ among lineages and that the growing environment has a relatively large influence on these mutation rates. These results suggested there was no significant increase in the mutation rate of the germplasm of Japanese cedar and flowering cherry trees growing in the contaminated areas.


Assuntos
Desastres , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Árvores/genética , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Japão
2.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626746

RESUMO

Aurantiochytrium limacinum can accumulate high amounts of omega-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA). Although salinity affects the DHA content, its impact on the metabolic pathway responsible for DHA production in A. limacinum is not completely understood. To address this issue, we investigated the transcriptional profile of A. limacinum under hypoosmotic stress. We first cultured A. limacinum under typical and low salinity for RNA sequencing, respectively. Transcriptome analyses revealed that 933 genes exhibited significant changes in expression under hypoosmotic conditions, of which 81.4% were downregulated. Strikingly, A. limacinum downregulated genes related to polyketide synthesis and fatty acid synthase pathways, while upregulating ß-oxidation-related genes. In accordance with this, DHA production significantly decreased under hypoosmotic conditions, while antioxidant-related genes were significantly upregulated. Considering that ß-oxidation of fatty acids generates energy and reactive oxygen species (ROS), our results suggest that A. limacinum utilizes fatty acids for energy to survive under hypoosmotic conditions and detoxifies ROS using antioxidant systems.


Assuntos
Antioxidantes , Ácidos Graxos Ômega-3 , Espécies Reativas de Oxigênio , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos , Perfilação da Expressão Gênica , Cloreto de Sódio
3.
Breed Sci ; 62(3): 248-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23226085

RESUMO

Numerous cultivars of Japanese flowering cherry (Prunus subgenus Cerasus) are recognized, but in many cases they are difficult to distinguish morphologically. Therefore, we evaluated the clonal status of 215 designated cultivars using 17 SSR markers. More than half the cultivars were morphologically distinct and had unique genotypes. However, 22 cultivars were found to consist of multiple clones, which probably originate from the chance seedlings, suggesting that their unique characteristics have not been maintained through propagation by grafting alone. We also identified 23 groups consisting of two or more cultivars with identical genotypes. Most members of these groups were putatively synonymously related and morphologically identical. However, some of them were probably derived from bud sport mutants and had distinct morphologies. SSR marker analysis provided useful insights into the clonal status of the examined Japanese flowering cherry cultivars and proved to be a useful tool for cultivar characterization.

4.
J Plant Res ; 124(1): 11-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20512520

RESUMO

The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an "isolation by distance" pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Núcleo Celular/genética , DNA de Cloroplastos/genética , Geografia , Repetições Minissatélites/genética , Prunus/genética , Loci Gênicos/genética , Variação Genética , Genética Populacional , Japão , Filogenia
5.
J Plant Res ; 122(4): 367-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19340524

RESUMO

The genetic resources of a particular species of flowering cherry, Cerasus jamasakura, have high conservation priority because of its cultural, ecological and economic value in Japan. Therefore, the genetic structures of 12 natural populations of C. jamasakura were assessed using ten nuclear SSR loci. The population differentiation was relatively low (F (ST), 0.043), reflecting long-distance dispersal of seeds by animals and historical human activities. However, a neighbor-joining tree derived from the acquired data, spatial analysis of molecular variance and STRUCTURE analysis revealed that the populations could be divided into two groups: one located on Kyusyu Island and one on Honshu Island. Genetic diversity parameters such as allelic richness and gene diversity were significantly lower in the Kyushu group than the Honshu group. Furthermore, STRUCTURE analysis revealed that the two lineages were admixed in the western part of Honshu Island. Thus, although the phylogeographical structure of the species and hybridization dynamics among related species need to be evaluated in detail using several marker systems, the Kyusyu Island and Honshu Island populations should be considered as different conservation units, and the islands should be regarded as distinct seed transfer zones for C. jamasakura, especially when rapid assessments are required.


Assuntos
Conservação dos Recursos Naturais , Flores/genética , Repetições Minissatélites/genética , Prunus/genética , Análise por Conglomerados , Variação Genética , Geografia , Japão , Filogenia , Dinâmica Populacional
6.
Genes Genet Syst ; 82(1): 65-75, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17396021

RESUMO

We surveyed the distribution of S-alleles in natural island populations of Prunus lannesiana var. speciosa sampled from seven sites on the Izu Peninsula and six Izu islands, Japan. The S-genotypes of sampled individuals were determined by Southern analysis of RFLPs generated by restriction enzyme digestion of genomic DNA, using cDNA of the S-RNase gene as a probe. All individuals were heterozygous, as expected under gametophytic self-incompatibility (GSI). Sixty-three S-alleles were observed in the species, but 12 private to the Izu Peninsula population seemed to be derived from related species, giving a total of 75. The estimated number of S-alleles in each population ranged from 26 to 62, and was inversely correlated with the respective population's distance from the Izu Peninsula, the closest point in the mainland to the islands. This geographical cline in the estimated numbers of S-alleles suggests that gene flow to and from the distant island populations was less frequent, and that the studied species has migrated from the mainland to the Izu islands. The genetic relationship at the S-locus among populations also gave an "isolation by distance" pattern. The genetic differentiation at the S-locus among the populations was very low (F(ST) = 0.014, p < 0.001). The number of S-alleles in the species did not seem to depend on genetic differences associated with population subdivisions. This might be due to the greater effective migration rates of S-alleles, as expected under balancing selection in GSI.


Assuntos
Alelos , Prunus/genética , DNA de Plantas/metabolismo , Frequência do Gene , Deriva Genética , Genética Populacional , Genótipo , Proteínas de Plantas/genética , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Prunus/classificação , Prunus/enzimologia , Ribonucleases/genética
7.
Tree Physiol ; 25(5): 533-44, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15741146

RESUMO

An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.


Assuntos
Aclimatação/fisiologia , Fagus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Luz Solar , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Fagus/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA