Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Pharm Biopharm ; 198: 114270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537908

RESUMO

Poorly soluble drugs represent a substantial portion of emerging drug candidates, posing significant challenges for pharmaceutical formulators. One promising method to enhance the drug's dissolution rate and, consequently, bioavailability involves transforming them into an amorphous state within mesoporous materials. These materials can then be seamlessly integrated into personalized drug formulations using Additive Manufacturing (AM) techniques, most commonly via Fused Deposition Modeling. Another innovative approach within the realm of AM for mesoporous material-based formulations is semi-solid extrusion (SSE). This study showcases the feasibility of a straightforward yet groundbreaking hybrid 3D printing system employing SSE to incorporate drug-loaded mesoporous magnesium carbonate (MMC) into two different drug formulations, each designed for distinct administration routes. MMC was loaded with the poorly water-soluble drug ibuprofen via a solvent evaporation method and mixed with PEG 400 as a binder and lubricant, facilitating subsequent SSE. The formulation is non-aqueous, unlike most pastes which are used for SSE, and thus is beneficial for the incorporation of poorly water-soluble drugs. The 3D printing process yielded tablets for oral administration and suppositories for rectal administration, which were then analyzed for their dissolution behavior in biorelevant media. These investigations revealed enhancements in the dissolution kinetics of the amorphous drug-loaded MMC formulations. Furthermore, an impressive drug loading of 15.3 % w/w of the total formulation was achieved, marking the highest reported loading for SSE formulations incorporating mesoporous materials to stabilize drugs in their amorphous state by a wide margin. This simple formulation containing PEG 400 also showed advantages over other aqueous formulations for SSE in that the formulations did not exhibit weight loss or changes in size or form during the curing process post-printing. These results underscore the substantial potential of this innovative hybrid 3D printing system for the development of drug dosage forms, particularly for improving the release profile of poorly water-soluble drugs.


Assuntos
Polietilenoglicóis , Impressão Tridimensional , Tecnologia Farmacêutica , Preparações Farmacêuticas , Solubilidade , Liberação Controlada de Fármacos , Composição de Medicamentos , Tecnologia Farmacêutica/métodos , Comprimidos
2.
Eur J Pharm Sci ; 187: 106486, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277047

RESUMO

Fused deposition modeling (FDM) and selective laser sintering (SLS) are two of the most employed additive manufacturing (AM) techniques within the pharmaceutical research field. Despite the numerous advantages of different AM methods, their respective drawbacks have yet to be fully addressed, and therefore combinatorial systems are starting to emerge. In the present study, hybrid systems comprising SLS inserts and a two-compartment FDM shell are developed to achieve controlled release of the model drug theophylline. Via the use of SLS a partial amorphization of the drug is demonstrated, which can be advantageous in the case of poorly soluble drugs, and it is shown that sintering parameters can regulate the dosage and release kinetics of the drug from the inserts. Furthermore, via different combinations of inserts within the FDM-printed shell, various drug release patterns, such as a two-step or prolonged release, can be achieved. The study serves as a proof of concept, highlighting the advantages of combining two AM techniques, both to overcome their respective shortcomings and to develop modular and highly tunable drug delivery devices.


Assuntos
Sistemas de Liberação de Medicamentos , Teofilina , Preparações Farmacêuticas , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Formas de Dosagem , Comprimidos
3.
Int J Pharm X ; 5: 100149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593988

RESUMO

The incorporation of drug-loaded mesoporous materials in dosage forms prepared with fused deposition modeling (FDM) has shown the potential to solve challenges relating to additive manufacturing techniques, such as the stability of poorly-soluble drugs in the amorphous state. However, the addition of these non-melting mesoporous materials significantly affects the mechanical properties of the filament used in FDM, which in turn affects the printability of the feedstock material. Therefore, in this study a full-factorial experimental design was utilized to investigate different processing parameters of the hot melt extrusion process, their effect on various mechanical properties and the potential correlation with the filaments' printability. The thermolabile, poorly-soluble drug ibuprofen was utilized as a model drug to assess the potential of two mesoporous materials, Mesoporous Magnesium Carbonate (MMC) and a silica-based material (MCM-41), to thermally protect the loaded drug. Factorial and principal components analysis displayed a correlation between non-printable MCM-41 filaments and their mechanical properties where printable filaments had a maximum stress >7.5 MPa and a Young's modulus >83 MPa. For MMC samples there was no clear correlation, which was in large part attributed to the filaments' inconsistencies and imperfections. Finally, both mesoporous materials displayed a thermal protective feature, as the decomposition due to the thermal degradation of a significant portion of the thermolabile drug was shifted to higher temperatures post-loading. This highlights the potential capability of such a system to be implemented for thermosensitive drugs in FDM applications.

4.
Pharmaceutics ; 13(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34371787

RESUMO

Fused deposition modelling (FDM) is the most extensively employed 3D-printing technique used in pharmaceutical applications, and offers fast and facile formulation development of personalized dosage forms. In the present study, mesoporous materials were incorporated into a thermoplastic filament produced via hot-melt extrusion and used to produce oral dosage forms via FDM. Mesoporous materials are known to be highly effective for the amorphization and stabilization of poorly soluble drugs, and were therefore studied in order to determine their ability to enhance the drug-release properties in 3D-printed tablets. Celecoxib was selected as the model poorly soluble drug, and was loaded into mesoporous silica (MCM-41) or mesoporous magnesium carbonate. In vitro drug release tests showed that the printed tablets produced up to 3.6 and 1.5 times higher drug concentrations, and up to 4.4 and 1.9 times higher release percentages, compared to the crystalline drug or the corresponding plain drug-loaded mesoporous materials, respectively. This novel approach utilizing drug-loaded mesoporous materials in a printed tablet via FDM shows great promise in achieving personalized oral dosage forms for poorly soluble drugs.

5.
Expert Opin Drug Deliv ; 17(8): 1063-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511025

RESUMO

The potential of fused filament fabrication (FFF) for the administration of active pharmaceutical compounds is a recent approach to develop complex and custom-made drug delivery systems (DDSs). However, the FFF technology is characterized by certain limitations, which are associated with the nature of the process, i.e., the required mechanical properties of the feedstock, as well as the thermal stability of the incorporated polymers, excipients and active compounds. Thus, hybrid DDSs have been recently introduced, to overcome these boundaries. The concept of these systems is defined by the effective coupling of FFF with conventional manufacturing technologies, as a novel pathway to expand the available pool of raw materials and pharmaceutical applications of FFF.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Excipientes/química , Polímeros/química , Impressão Tridimensional , Tecnologia
6.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32597338

RESUMO

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Assuntos
Derivados da Hipromelose/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Impressão Tridimensional
7.
Pharm Dev Technol ; 25(4): 517-523, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31903821

RESUMO

To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.


Assuntos
Preparações de Ação Retardada/química , Dextranos/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Corantes Fluorescentes/administração & dosagem , Metilcelulose/análogos & derivados , Peptídeos/química , Cápsulas/química , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/administração & dosagem , Hidrogéis/química , Concentração de Íons de Hidrogênio , Metilcelulose/química , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA