Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475301

RESUMO

Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.

2.
Bioconjug Chem ; 27(8): 1830-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27391789

RESUMO

Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Neoplasias Pancreáticas/patologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Compostos Azo/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Oligopeptídeos/química , Polietilenoglicóis/química
3.
Mol Pharm ; 11(7): 2390-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24827725

RESUMO

Significant differences in biochemical parameters between normal and tumor tissues offer an opportunity to chemically design drug carriers which respond to these changes and deliver the drugs at the desired site. For example, overexpression of the matrix metalloproteinase-9 (MMP-9) enzyme in the extracellular matrix of tumor tissues can act as a trigger to chemically modulate the drug delivery from the carriers. In this study, we have synthesized an MMP-9-cleavable, collagen mimetic lipopeptide which forms nanosized vesicles with the POPC, POPE-SS-PEG, and cholesteryl-hemisuccinate lipids. The lipopeptide retains the triple-helical conformation when incorporated into these nanovesicles. The PEG groups shield the substrate lipopeptides from hydrolysis by MMP-9. However, in the presence of elevated glutathione levels, the PEG groups are reductively removed, exposing the lipopeptides to MMP-9. The resultant peptide-bond cleavage disturbs the vesicles' lipid bilayer, leading to the release of encapsulated contents. These PEGylated nanovesicles are capable of encapsulating the anticancer drug gemcitabine with 50% efficiency. They were stable in physiological conditions and in human serum. Effective drug release was demonstrated using the pancreatic ductal carcinoma cells (PANC-1 and MIAPaCa-2) in two-dimensional and three-dimensional "tumor-like" spheroid cultures. A reduction in tumor growth was observed after intravenous administration of the gemcitabine-encapsulated nanovesicles in the xenograft model of athymic, female nude mice.


Assuntos
Antineoplásicos/química , Metaloproteinase 9 da Matriz/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/química , Vesículas Transportadoras/química , Animais , Antineoplásicos/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Hidrólise , Bicamadas Lipídicas/metabolismo , Lipopeptídeos/administração & dosagem , Lipopeptídeos/química , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Polietilenoglicóis/administração & dosagem , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA