Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557355

RESUMO

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Assuntos
Humor Aquoso , Digoxina , Pressão Intraocular , Macaca fascicularis , Hipertensão Ocular , Animais , Pressão Intraocular/efeitos dos fármacos , Digoxina/farmacologia , Humor Aquoso/metabolismo , Humor Aquoso/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Coelhos , Humanos , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Masculino , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
2.
J Biol Chem ; 297(6): 101355, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34717959

RESUMO

The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.


Assuntos
Epilepsia/genética , Mutação de Sentido Incorreto , ATPase Trocadora de Sódio-Potássio/genética , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Resistência a Medicamentos , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Humanos , Lactente , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/efeitos dos fármacos , Subunidades Proteicas/análise , Subunidades Proteicas/genética , ATPase Trocadora de Sódio-Potássio/análise , Xenopus
3.
J Pharmacol Toxicol Methods ; 94(Pt 2): 64-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30244071

RESUMO

INTRODUCTION: Ouabain and digoxin are classical inhibitors of the Na+,K+-ATPase. In addition to their conventional uses as therapeutic agents or experimental tools there is renewed interest due to evidence suggesting they could be endogenous hormones. Somewhat surprisingly, different publications show large discrepancies in potency for inhibiting Na+,K+-ATPase activity (IC50), particularly for the slow binding inhibitors, ouabain and digoxin. METHODS: Using purified pig kidney Na+,K+-ATPase (α1ß1FXYD2) and purified detergent-soluble recombinant human Na+,K+-ATPase (α1ß1FXYD1) we have re-evaluated binding and inhibition kinetics and effects of K+ concentration for ouabain, digoxin, ouabagenin and digoxigenin. RESULTS: We demonstrate unequivocally that for slow binding inhibitors, ouabain and digoxin, long incubation times (≥60 min at 37 °C) are required to avoid under-estimation of potency and correctly determine inhibition (IC50 around 100-200 nM at 5 mM K+) contrary to what occurs when pre-incubation of the drugs without ATP is followed by a short incubation time. By contrast, for the rapidly bound inhibitors, ouabagenin and digoxigenin, short incubation times suffice (<10 min). The strong reduction of inhibitory potency observed at high un-physiological K+ concentrations (≥5 mM) also explained the low potency reported by some authors. DISCUSSION: The data resolve discrepancies in the literature attributable to sub-optimal assay conditions. Similar IC50 values are obtained for pig kidney and recombinant human Na+,K+-ATPase, showing that inhibitory potencies are not determined by the species difference (pig versus human) or environment (membrane-bound versus detergent-soluble) of the Na+,K+-ATPase. The present methodological considerations are especially relevant for drug development of slow binding inhibitors.


Assuntos
Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/farmacocinética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Digoxigenina/farmacocinética , Digoxina/farmacocinética , Humanos , Rim/enzimologia , Ouabaína/análogos & derivados , Ouabaína/farmacocinética , Ligação Proteica , Relação Estrutura-Atividade , Suínos
4.
J Biol Chem ; 291(44): 23159-23174, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27624940

RESUMO

The Na,K-ATPase α2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca2+, whereas α1 has a more conventional role of maintaining ion homeostasis. The ß subunit differentially regulates maturation, trafficking, and activity of α-ß heterodimers. It is not known whether the distinct role of α2 in the heart is related to selective assembly with a particular one of the three ß isoforms. We show here by immunofluorescence and co-immunoprecipitation that α2 is preferentially expressed with ß2 in T-tubules of cardiac myocytes, forming α2ß2 heterodimers. We have expressed human α1ß1, α2ß1, α2ß2, and α2ß3 in Pichia pastoris, purified the complexes, and compared their functional properties. α2ß2 and α2ß3 differ significantly from both α2ß1 and α1ß1 in having a higher K0.5K+ and lower K0.5Na+ for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K+ and shift of the E1P-E2P conformational equilibrium toward E1P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α2ß2 and α2ß3 over α1ß1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K+ affinity of α2ß2 could allow an acute response to raised ambient K+ concentrations in physiological conditions and explain the importance of α2ß2 for cardiac muscle contractility. The high sensitivity of α2ß2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α2ß2-selective digoxin derivatives for reducing cardiotoxicity.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Inibidores Enzimáticos/química , Miocárdio/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/química , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Moléculas de Adesão Celular Neuronais/química , Dimerização , Inibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Camundongos , Miocárdio/química , Potássio/química , Potássio/metabolismo , Sódio/química , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
5.
J Biol Chem ; 291(22): 11736-50, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27022017

RESUMO

Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1ß1FXYD1 or porcine α1D369Nß1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.


Assuntos
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Medula Renal/metabolismo , Microssomos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Quinases da Família src/metabolismo , Animais , Western Blotting , Cavéolas/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Humanos , Imunoprecipitação , Fosforilação , Ligação Proteica , Coelhos , Transdução de Sinais , Suínos
6.
Proc Natl Acad Sci U S A ; 112(44): 13723-8, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483500

RESUMO

The ciliary epithelium in the eye consists of pigmented epithelial cells that express the α1ß1 isoform of Na,K-ATPase and nonpigmented epithelial cells that express mainly the α2ß3 isoform. In principle, a Na,K-ATPase inhibitor with selectivity for α2ß3 that penetrates the cornea could effectively reduce intraocular pressure, with minimal systemic or local toxicity. We have recently synthesized perhydro-1,4-oxazepine derivatives of digoxin by NaIO4 oxidation of the third digitoxose and reductive amination with various R-NH2 substituents and identified derivatives with significant selectivity for human α2ß1 over α1ß1 (up to 7.5-fold). When applied topically, the most α2-selective derivatives effectively prevented or reversed pharmacologically raised intraocular pressure in rabbits. A recent structure of Na,K-ATPase, with bound digoxin, shows the third digitoxose approaching one residue in the ß1 subunit, Gln84, suggesting a role for ß in digoxin binding. Gln84 in ß1 is replaced by Val88 in ß3. Assuming that alkyl substituents might interact with ß3Val88, we synthesized perhydro-1,4-oxazepine derivatives of digoxin with diverse alkyl substituents. The methylcyclopropyl and cyclobutyl derivatives are strongly selective for α2ß3 over α1ß1 (22-33-fold respectively), as determined either with purified human isoform proteins or intact bovine nonpigmented epithelium cells. When applied topically on rabbit eyes, these derivatives potently reduce both pharmacologically raised and basal intraocular pressure. The cyclobutyl derivative is more efficient than Latanoprost, the most widely used glaucoma drug. Thus, the conclusion is that α2ß3-selective digoxin derivatives effectively penetrate the cornea and inhibit the Na,K-ATPase, hence reducing aqueous humor production. The new digoxin derivatives may have potential for glaucoma drug therapy.


Assuntos
Digoxina/farmacologia , Pressão Intraocular/efeitos dos fármacos , Isoenzimas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Bovinos , Feminino , Masculino , Coelhos
7.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25533463

RESUMO

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Fosfatidilserinas/química , Fosfolipídeos/química , Fosfoproteínas/química , ATPase Trocadora de Sódio-Potássio/química , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
J Biol Chem ; 289(30): 21153-62, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24917667

RESUMO

In the ciliary epithelium of the eye, the pigmented cells express the α1ß1 isoform of Na,K-ATPase, whereas the non-pigmented cells express mainly the α2ß3 isoform of Na,K-ATPase. In principle, a Na,K-ATPase inhibitor with selectivity for α2 could effectively reduce intraocular pressure with only minimal local and systemic toxicity. Such an inhibitor could be applied topically provided it was sufficiently permeable via the cornea. Previous experiments with recombinant human α1ß1, α2ß1, and α3ß1 isoforms showed that the classical cardiac glycoside, digoxin, is partially α2-selective and also that the trisdigitoxose moiety is responsible for isoform selectivity. This led to a prediction that modification of the third digitoxose might increase α2 selectivity. A series of perhydro-1,4-oxazepine derivatives of digoxin have been synthesized by periodate oxidation and reductive amination using a variety of R-NH2 substituents. Several derivatives show enhanced selectivity for α2 over α1, close to 8-fold in the best case. Effects of topically applied cardiac glycosides on intraocular pressure in rabbits have been assessed by their ability to either prevent or reverse acute intraocular pressure increases induced by 4-aminopyridine or a selective agonist of the A3 adenosine receptor. Two relatively α2-selective digoxin derivatives efficiently normalize the ocular hypertension, by comparison with digoxin, digoxigenin, or ouabain. This observation is consistent with a major role of α2 in aqueous humor production and suggests that, potentially, α2-selective digoxin derivatives could be of interest as novel drugs for control of intraocular pressure.


Assuntos
Digoxina , Inibidores Enzimáticos/farmacologia , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , 4-Aminopiridina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Administração Tópica , Animais , Digoxina/análogos & derivados , Digoxina/farmacologia , Humanos , Isoenzimas/metabolismo , Hipertensão Ocular/enzimologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Receptor A3 de Adenosina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
J Membr Biol ; 246(12): 967-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105627

RESUMO

The human α1/His10-ß1 isoform of Na,K-ATPase has been reconstituted as a complex with and without FXYD1 into proteoliposomes of various lipid compositions in order to study the effect of the regulatory subunit on the half-saturating Na⁺ concentration (K(½)) of Na⁺ ions for activation of the ion pump. It has been shown that the fraction of negatively charged lipid in the bilayer crucially affects the regulatory properties. At low concentrations of the negatively charged lipid DOPS (<10 %), FXYD1 increases K(½) of Na⁺ ions for activation of the ion pump. Phosphorylation of FXYD1 by protein kinase A at Ser68 abrogates this effect. Conversely, for proteoliposomes made with high concentrations of DOPS (>10 %), little or no effect of FXYD1 on the K(½) of Na⁺ ions is observed. Depending on ionic strength and lipid composition of the proteoliposomes, FXYD1 can alter the K(½) of Na⁺ ions by up to twofold. We propose possible molecular mechanisms to explain the regulatory effects of FXYD1 and the influence of charged lipid and protein phosphorylation. In particular, the positively charged C-terminal helix of FXYD1 appears to be highly mobile and may interact with the cytoplasmic N domain of the α-subunit, the interaction being strongly affected by phosphorylation at Ser68 and the surface charge of the membrane.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Íons/metabolismo , Rim/metabolismo , Cinética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Potenciais da Membrana , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Concentração Osmolar , Fosforilação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteolipídeos/metabolismo , Coelhos
10.
Mol Cancer ; 12: 33, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23621895

RESUMO

BACKGROUND: Surface-expressed Na+/K+-ATPase (NaK) has been suggested to function as a non-canonical cardiotonic steroid-binding receptor that activates multiple signaling cascades, especially in cancer cells. By contrast, the current study establishes a clear correlation between the IC50in vitro growth inhibitory concentration in human cancer cells and the Ki for the inhibition of activity of purified human α1ß1 NaK. METHODS: The in vitro growth inhibitory effects of seven cardiac glycosides including five cardenolides (ouabain, digoxin, digitoxin, gitoxin, uzarigenin-rhamnoside, and their respective aglycone forms) and two bufadienolides (gamabufotalin-rhamnoside and hellebrin, and their respective aglycone forms) were determined by means of the MTT colorimetric assay and hellebrigenin-induced cytotoxic effects were visualized by means of quantitative videomicroscopy. The binding affinity of ten of the 14 compounds under study was determined with respect to human α1ß1, α2ß1 and α3ß1 NaK complexes. Lactate releases and oxygen consumption rates were also determined in cancer cells treated with these various cardiac glycosides. RESULTS: Although cardiotonic steroid aglycones usually display weaker binding affinity and in vitro anticancer activity than the corresponding glycoside, the current study demonstrates that the hellebrin / hellebrigenin pair is at odds with respect to this rule. In addition, while some cardiac steroid glycosides (e.g., digoxin), but not the aglycones, display a higher binding affinity for the α2ß1 and α3ß1 than for the α1ß1 complex, both hellebrin and its aglycone hellebrigenin display ~2-fold higher binding affinity for α1ß1 than for the α2ß1 and α3ß1 complexes. Finally, the current study highlights a common feature for all cardiotonic steroids analyzed here, namely a dramatic reduction in the oxygen consumption rate in cardenolide- and bufadienolide-treated cells, reflecting a direct impact on mitochondrial oxidative phosphorylation. CONCLUSIONS: Altogether, these data show that the binding affinity of the bufadienolides and cardenolides under study is usually higher for the α2ß1 and α3ß1 than for the α1ß1 NaK complex, excepted for hellebrin and its aglycone form, hellebrigenin, with hellebrigenin being as potent as hellebrin in inhibiting in vitro cancer cell growth.


Assuntos
Bufanolídeos/farmacologia , Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Bufanolídeos/química , Bufanolídeos/metabolismo , Bufanolídeos/toxicidade , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/metabolismo , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Glicosilação , Células HT29 , Humanos , Concentração Inibidora 50 , Isoenzimas , Ácido Láctico/metabolismo , Metaboloma , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio , Ligação Proteica , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Planta ; 236(1): 19-33, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22231009

RESUMO

Many green algal species can accumulate large amounts of triacylglycerides (TAG) under nutrient deprivation, making them a potential source for production of biodiesel. TAG are organized in cytoplasmic lipid bodies, which contain a major lipid droplet protein termed MLDP. Green algae MLDP differ in sequence from plant oleosins and from animal perilipins, and their structure and function are not clear. In this study, we describe the isolation of MLDP from three species of the extreme halotolerant green algae Dunaliella. Sequence alignment with other green algae MLDP proteins identified a conserved 4-proline domain that may be considered as a signature domain of Volvocales green algae MLDP. Gold immunolabeling localized MLDP at the surface of lipid droplets in D. salina. The induction of MLDP by nitrogen deprivation is kinetically correlated with TAG accumulation, and inhibition of TAG biosynthesis impairs MLDP accumulation suggesting that MLDP induction is co-regulated with TAG accumulation. These results can lead to a better understanding of the structure and function of Volvocales green algae MLDP proteins.


Assuntos
Proteínas de Algas/biossíntese , Proteínas de Algas/isolamento & purificação , Clorófitas/química , Nitrogênio/deficiência , Plantas Tolerantes a Sal/química , Triglicerídeos/biossíntese , Triglicerídeos/isolamento & purificação , Sequência de Aminoácidos , Clorófitas/genética , Variação Genética , Genótipo , Metabolismo dos Lipídeos , Organelas/metabolismo , Plantas Tolerantes a Sal/genética , Alinhamento de Sequência
12.
J Biol Chem ; 286(50): 42888-99, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22027833

RESUMO

The α2 isoform of Na,K-ATPase plays a crucial role in Ca(2+) handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1ß1, α2ß1, and α3ß1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1). We have examined an hypothesis that instability of α2 is caused by weak interactions with phosphatidylserine, which stabilizes the protein. Three residues, unique to α2, in trans-membrane segments M8 (Ala-920), M9 (Leu-955), and M10 (Val-981) were replaced by equivalent residues in α1, singly or together. Judged by the sensitivity of the purified proteins to heat, detergent, "affinity" for phosphatidylserine, and stabilization by FXYD1, the triple mutant (A920V/L955F/V981P, called α2VFP) has stability properties close to α1, although single mutants have only modest or insignificant effects. Functional differences between α1 and α2 are unaffected in α2VFP. A compound, 6-pentyl-2-pyrone, isolated from the marine fungus Trichoderma gamsii is a novel probe of specific phospholipid-protein interactions. 6-Pentyl-2-pyrone inactivates the isoforms in the order α2 ≫ α3 > α1, and α2VFP and FXYD1 protect the isoforms. In native rat heart sarcolemma membranes, which contain α1, α2, and α3 isoforms, a component attributable to α2 is the least stable. The data provide clear evidence for a specific phosphatidylserine binding pocket between M8, M9, and M10 and confirm that the instability of α2 is due to suboptimal interactions with phosphatidylserine. In physiological conditions, the instability of α2 may be important for its cellular regulatory functions.


Assuntos
Isoenzimas/metabolismo , Fosfolipídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Mutação , Fosfatidilserinas/antagonistas & inibidores , Fosfatidilserinas/metabolismo , Fosfolipídeos/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Pironas/farmacologia , Ratos , Sarcolema/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L23-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478253

RESUMO

Widespread vascular endothelial injury is the major mechanism for multiorgan dysfunction in sepsis. Following this process, the permeability of the alveolar capillaries is augmented with subsequent increase in water content and acute respiratory distress syndrome (ARDS). Nevertheless, the role of alveolar epithelium is less known. Therefore, we examined alveolar fluid clearance (AFC) using isolated perfused rat lung model in septic rats without ARDS. Sepsis was induced by ligating and puncturing the cecum with a 21-gauge needle. AFC was examined 24 and 48 h later. The expression of Na-K-ATPase proteins was examined in type II alveolar epithelial cells (ATII) and basolateral membrane (BLM). The rate of AFC in control rats was 0.51 ± 0.02 ml/h (means ± SE) and decreased to 0.3 ± 0.02 and 0.33 ± 0.03 ml/h in 24 and 48 h after sepsis induction, respectively (P < 0.0001). Amiloride, significantly decreased AFC in sepsis; conversely, isoproterenol reversed the inhibitory effect of sepsis. The alveolar-capillary barrier in septic rats was intact; therefore the finding of increased extravascular lung water in early sepsis could be attributed to accumulation of protein-poor fluid. The expression of epithelial sodium channel and Na-K-ATPase proteins in whole ATII cells was not different in both cecal ligation and puncture and control groups; however, the abundance of Na-K-ATPase proteins was significantly decreased in BLMs of ATII cells in sepsis. Early decrease in AFC in remote sepsis is probably related to endocytosis of the Na-K-ATPase proteins from the cell plasma membrane into intracellular pools, with resultant inhibition of active sodium transport in ATII cells.


Assuntos
Regulação para Baixo , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , Sepse/enzimologia , Sepse/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Amilorida/farmacologia , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar , Catecolaminas/sangue , Regulação para Baixo/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Água Extravascular Pulmonar/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Tamanho do Órgão/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sepse/sangue
14.
Biochemistry ; 50(18): 3736-48, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21449573

RESUMO

The human α(1)/His(10)-ß(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-ß-maltoside, and purified by metal chelate chromatography. The α(1)ß(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitro with the α(1)/His(10)-ß(1) complex and stabilizes it in an active mode. The functional properties of the α(1)/His(10)-ß(1) and α(1)/His(10)-ß(1)/FXYD1 complexes have been investigated by fluorescence methods. The electrochromic dye RH421 which monitors binding to and release of ions from the binding sites has been applied in equilibrium titration experiments to determine ion binding affinities and revealed that FXYD1 induces an ∼30% increase of the Na(+)-binding affinity in both the E(1) and P-E(2) conformations. By contrast, it does not affect the affinities for K(+) and Rb(+) ions. Phosphorylation induced partial reactions of the enzyme have been studied as backdoor phosphorylation by inorganic phosphate and in kinetic experiments with caged ATP in order to evaluate the ATP-binding affinity and the time constant of the conformational transition, Na(3)E(1)-P → P-E(2)Na(3). No significant differences with or without FXYD1 could be detected. Rate constants of the conformational transitions Rb(2)E(1) → E(2)(Rb(2)) and E(2)(Rb(2)) → Na(3)E(1), investigated with fluorescein-labeled Na,K-ATPase, showed only minor or no effects of FXYD1, respectively. The conclusion from all these experiments is that FXYD1 raises the binding affinity of α(1)ß(1) for Na ions, presumably at the third Na-selective binding site. In whole cell expression studies FXYD1 reduces the apparent affinity for Na ions. Possible reasons for the difference from this study using the purified recombinant Na,K-ATPase are discussed.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Bovinos , Relação Dose-Resposta a Droga , Humanos , Íons , Cinética , Proteínas de Membrana/química , Fosfoproteínas/química , Pichia/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes/química , Albumina Sérica/química , Espectrometria de Fluorescência/métodos
15.
J Biol Chem ; 285(25): 19582-92, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20388710

RESUMO

There are four isoforms of the alpha subunit (alpha1-4) and three isoforms of the beta subunit (beta1-3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. alpha2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An alpha2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of alpha2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing alpha1beta1, alpha2beta1, and alpha3beta1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, beta-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for alpha2/alpha3 over alpha1 (K(D) alpha1 > alpha2 = alpha3). By contrast, ouabain shows moderate selectivity ( approximately 2.5-fold) for alpha1 over alpha2 (K(D) alpha1

Assuntos
Glicosídeos Cardíacos/metabolismo , Glicosídeos Digitálicos/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Membrana Celular/metabolismo , Humanos , Íons , Cinética , Modelos Biológicos , Modelos Estatísticos , Miocárdio/metabolismo , Pichia/metabolismo , Potássio/química , Ligação Proteica , Isoformas de Proteínas , Fatores de Tempo
16.
Biochemistry ; 48(38): 9147-55, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19708718

RESUMO

A method for investigating electrogenic partial reactions in the pump cycle of membrane-bound P-type ATPases with electrochromic fluorescent dyes has been extended to detergent-solubilized native and purified recombinant Na,K-ATPase. As a first step, it has been shown here that the function and ion binding properties of the detergent-soluble and membrane-bound rabbit renal Na,K-ATPase are not significantly different. Thus, the new assay overcomes a previous limitation of the styryl dye method, in that the protein need not be embedded in a membrane at a high density. As an example of an application of this method, transport properties of recombinant Na,K-ATPase purified from yeast cells have been studied. We have investigated and compared Na+ and K+ binding properties of purified detergent-soluble human alpha1/his-beta1 and alpha2/his-beta1 isoforms of the sodium pump. The only significant difference found with respect to ion binding between both isoforms is an almost 3-fold lower affinity for K+ binding in the E2P state of the alpha2/his-beta1 isoform. This technique should be readily applicable to various other P-type ATPases or transport proteins such as carriers or ion channels that can be purified in a detergent-soluble active form.


Assuntos
ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Domínio Catalítico , Detergentes , Humanos , Técnicas In Vitro , Isoenzimas/química , Isoenzimas/metabolismo , Medula Renal/enzimologia , Cinética , Fosforilação , Pichia/enzimologia , Pichia/genética , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , Solubilidade , Espectrometria de Fluorescência
17.
Mol Cell Proteomics ; 6(9): 1459-72, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17569891

RESUMO

The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analysis of the plasma membrane. Plasma membrane proteins were recognized by tagging intact cells with a membrane-impermeable biotin derivative. Proteins were resolved by two-dimensional blue native/SDS-PAGE and identified by nano-LC-MS/MS. Of 55 identified proteins, about 60% were integral membrane or membrane-associated proteins. We identified novel surface coat proteins, lipid-metabolizing enzymes, a new family of membrane proteins of unknown function, ion transporters, small GTP-binding proteins, and heat shock proteins. The abundance of 20 protein spots increased and that of two protein spots decreased under high salt. The major salt-regulated proteins were implicated in protein and membrane structure stabilization and within signal transduction pathways. The migration profiles of native protein complexes on blue native gels revealed oligomerization or co-migration of major surface-exposed proteins, which may indicate mechanisms of stabilization at high salinity.


Assuntos
Eucariotos/fisiologia , Proteômica/métodos , Sais/farmacologia , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Biotinilação , Membrana Celular/metabolismo , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional , Eucariotos/metabolismo , Etiquetas de Sequências Expressas , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteoma , Homologia de Sequência de Aminoácidos
18.
J Biol Chem ; 282(12): 8658-66, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17227764

RESUMO

The halotolerant alga Dunaliella salina is unique among plants in that it utilizes a transferrin (TTf) to mediate iron acquisition (Fisher, M., Zamir, A., and Pick, U. (1998) J. Biol. Chem. 273, 17553-17558). Two new proteins that are induced by iron deprivation were identified in plasma membranes of D. salina as follows: a multicopper ferroxidase termed D-Fox and an internally duplicated glycoprotein (p130B). D-Fox and p130B are accessible to glycolytic, proteolytic, and biotin surface tagging treatments, suggesting that they are surface-exposed glycoproteins. Induction of D-Fox was also manifested by ferroxidase activity in plasma membrane preparations. These results are puzzling because ferroxidases in yeast and in Chlamydomonas reinhardtii function in redox-mediated iron uptake, a mechanism that is not known to operate in D. salina. Two lines of evidence suggest that D-Fox and p130B interact with D. salina triplicated transferrin (TTf). First, chemical cross-linking combined with mass spectroscopy analysis showed that D-Fox and p130B associate with TTf and with another plasma membrane transferrin. Second, detergent-solubilized D-Fox and p130B comigrated on blue native gels with plasma membrane transferrins. 59Fe autoradiography indicated that this complex binds Fe3+ ions. Also, the induction of D-Fox and p130B is kinetically correlated with enhanced iron binding and uptake activities. These results suggest that D-Fox and p130B associate with plasma membrane transferrins forming a complex that enhances iron binding and iron uptake. We propose that the function of D-Fox in D. salina has been modified during evolution from redox-mediated to transferrin-mediated iron uptake, following a gene transfer event of transferrins from an ancestral animal cell.


Assuntos
Proteínas de Algas/genética , Membrana Celular/metabolismo , Ceruloplasmina/química , Ceruloplasmina/genética , Eucariotos/metabolismo , Ferro/química , Transferrina/química , Proteínas de Algas/fisiologia , Sequência de Aminoácidos , Autorradiografia , Sequência de Bases , Ceruloplasmina/metabolismo , Ceruloplasmina/fisiologia , Clonagem Molecular , Reagentes de Ligações Cruzadas/farmacologia , Dados de Sequência Molecular , Oxirredução , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos
19.
Plant Physiol ; 136(1): 2806-17, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333751

RESUMO

Salinity is a major limiting factor for the proliferation of plants and inhibits central metabolic activities such as photosynthesis. The halotolerant green alga Dunaliella can adapt to hypersaline environments and is considered a model photosynthetic organism for salinity tolerance. To clarify the molecular basis for salinity tolerance, a proteomic approach has been applied for identification of salt-induced proteins in Dunaliella. Seventy-six salt-induced proteins were selected from two-dimensional gel separations of different subcellular fractions and analyzed by mass spectrometry (MS). Application of nanoelectrospray mass spectrometry, combined with sequence-similarity database-searching algorithms, MS BLAST and MultiTag, enabled identification of 80% of the salt-induced proteins. Salinity stress up-regulated key enzymes in the Calvin cycle, starch mobilization, and redox energy production; regulatory factors in protein biosynthesis and degradation; and a homolog of a bacterial Na(+)-redox transporters. The results indicate that Dunaliella responds to high salinity by enhancement of photosynthetic CO(2) assimilation and by diversion of carbon and energy resources for synthesis of glycerol, the osmotic element in Dunaliella. The ability of Dunaliella to enhance photosynthetic activity at high salinity is remarkable because, in most plants and cyanobacteria, salt stress inhibits photosynthesis. The results demonstrated the power of MS BLAST searches for the identification of proteins in organisms whose genomes are not known and paved the way for dissecting molecular mechanisms of salinity tolerance in algae and higher plants.


Assuntos
Clorófitas/genética , Clorófitas/metabolismo , Proteínas de Algas/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Clorófitas/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Metabolismo Energético , Espectrometria de Massas , Modelos Biológicos , Oxirredução , Fotossíntese , Proteômica , Cloreto de Sódio/farmacologia
20.
Isr J Psychiatry Relat Sci ; 41(1): 61-5; discussion 65-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15160657

RESUMO

Psychiatric rehabilitation combats the damaging effects of mental illness on living, occupational and social skills, and strives to help patients lead creative and fulfilling lives. Medical and social changes, as well as financial pressure, have all increased the need for community rather than institutional rehabilitation. New philosophical emphases highlight patient self-actualization and empowerment. This paper describes the development of a puppet theater, whose members and artistic director are almost all chronic psychiatric patients; the project has achieved steady sheltered employment status and been awarded the first Zussman-JDC prize by the president of Israel. Interviews with patients elicited major differences between patient perceptions of traditional rehabilitation frameworks and the theater. Theater is more creative than typical sheltered employment opportunities for mental patients, and puppet theater has unique aspects that may be especially suited to their needs. Patients found participation an empowering experience.


Assuntos
Arte , Criatividade , Transtornos Mentais/psicologia , Pacientes/psicologia , Jogos e Brinquedos/psicologia , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA