Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 520: 62-67, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28017740

RESUMO

One of the most common assays for nucleoside triphosphatase (NTPase) activity entails the quantification of inorganic phosphate (Pi) as a colored phosphomolybdate complex at low pH. While this assay is very sensitive, it is not selective for Pi in the presence of labile organic phosphate compounds (OPCs). Since NTPase activity assays typically require a large excess of OPCs, such as nucleotides, selectivity for Pi in the presence of OPCs is often critical in evaluating enzyme activity. Here we present an improved method for the measurement of enzymatic nucleotide hydrolysis as Pi released, which achieves selectivity for Pi in the presence of OPCs while also avoiding the costs and hazards inherent in other methods for measuring nucleotide hydrolysis. We apply this method to the measurement of ATP hydrolysis by nitrogenase and GTP hydrolysis by elongation factor G (EF-G) in order to demonstrate the broad applicability of our method for the determination of nucleotide hydrolysis in the presence of interfering OPCs.


Assuntos
Colorimetria , Nucleosídeo-Trifosfatase/metabolismo , Fosfatos/metabolismo , Hidrólise , Molibdênio/análise , Molibdênio/química , Molibdênio/metabolismo , Fosfatos/análise , Ácidos Fosfóricos/análise , Ácidos Fosfóricos/metabolismo , Fósforo/química
2.
J Am Chem Soc ; 138(32): 10124-7, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27487256

RESUMO

The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.


Assuntos
Elétrons , Gluconacetobacter/enzimologia , Nitrogenase/química , Tirosina/química , Alanina/química , Proteínas de Bactérias/química , Sítios de Ligação , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Ligantes , Molibdoferredoxina/metabolismo , Oxirredução , Oxigênio/química , Conformação Proteica
3.
J Am Chem Soc ; 137(39): 12704-12, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26360912

RESUMO

Nitrogenase is the only enzyme that can convert atmospheric dinitrogen (N2) into biologically usable ammonia (NH3). To achieve this multielectron redox process, the nitrogenase component proteins, MoFe-protein (MoFeP) and Fe-protein (FeP), repeatedly associate and dissociate in an ATP-dependent manner, where one electron is transferred from FeP to MoFeP per association. Here, we provide experimental evidence that encounter complexes between FeP and MoFeP play a functional role in nitrogenase catalysis. The encounter complexes are stabilized by electrostatic interactions involving a positively charged patch on the ß-subunit of MoFeP. Three single mutations (ßAsn399Glu, ßLys400Glu, and ßArg401Glu) in this patch were generated in Azotobacter vinelandii MoFeP. All of the resulting variants displayed decreases in specific catalytic activity, with the ßK400E mutation showing the largest effect. As simulated by the Thorneley-Lowe kinetic scheme, this single mutation lowered the rate constant for FeP-MoFeP association 5-fold. We also found that the ßK400E mutation did not affect the coupling of ATP hydrolysis with electron transfer (ET) between FeP and MoFeP. These data suggest a mechanism where FeP initially forms encounter complexes on the MoFeP ß-subunit surface en route to the ATP-activated, ET-competent complex over the αß-interface.


Assuntos
Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA