Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Semin Cell Dev Biol ; 124: 99-113, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33865701

RESUMO

Chemoresistance is a major hindrance in cancer chemotherapies, a leading cause of tumor recurrence and cancer-related deaths. Cancer cells develop numerous strategies to elude immune attacks and are regulated by immunological factors. Cancer cells can alter the expression of several immune modulators to upregulate the activities of immune checkpoint pathways. Targeting the immune checkpoint inhibitors is a part of the cancer immunotherapy altered during carcinogenesis. These immune modulators have the capability to reprogram the tumor microenvironment, thereby change the efficacy of chemotherapeutics. In general, the sensitivity of drugs is reduced in the immunosuppressive tumor microenvironment, resulting in chemoresistance and tumor relapse. The regulation of microRNAs (miRNAs) is well established in cancer initiation, progression, and therapy. Intriguingly, miRNA affects cancer immune surveillance and immune response by targeting immune checkpoint inhibitors in the tumor microenvironment. miRNAs alter the gene expression at the post-transcriptional level, which modulates both innate and adaptive immune systems. Alteration of tumor immune microenvironment influences drug sensitivity towards cancer cells. Besides, the expression profile of immune-modulatory miRNAs can be used as a potential biomarker to predict the response and clinical outcomes in cancer immunotherapy and chemotherapy. Recent evidences have revealed that cancer-derived immune-modulatory miRNAs might be promising targets to counteract cancer immune escape, thereby increasing drug efficacy. In this review, we have compiled the role of miRNAs in overcoming the chemoresistance by modulating tumor microenvironment and discussed their preclinical and clinical implications.


Assuntos
MicroRNAs , Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
2.
Gene ; 809: 146016, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34655723

RESUMO

Chemoresistance is one of the major challenges in the treatment of breast cancer. Recent evidence suggests that epithelial-to-mesenchymal transition (EMT) plays a critical role in not only metastasis but also in chemoresistance, hence causing tumor relapse. This study aimed to identify the hub genes associated with EMT and chemoresistance in breast cancer affecting patient/clinical survival. Commonly differentially expressed genes (DEGs) during EMT and chemoresistance in breast cancer cells were identified using publicly available datasets, GSE23655, GSE39359, GSE33146 and GSE76540. Hierarchical clustering analysis was utilized to determine the commonly DEGs expression pattern in chemoresistant (CR) breast cancer cells. GSEA revealed that EMT-related genes sets were enriched in the CR samples. Further, we found that EMT-induced breast cancer cells showed overexpression of drug efflux transporters along with resistance to chemotherapeutic drug. Pathway enrichment analysis revealed that the commonly DEGs were enriched in immunological pathways, early endosome, protein dimerization, and proteoglycans in cancer. Further, we identified eight hub genes from the protein-protein interaction (PPI) network. We validated the gene expression levels of the hub genes among TCGA breast cancer samples using UALCAN. Survival analysis for the hub genes was performed using KM plotter, which showed a worse relapse-free survival (RFS) of the hub genes among breast cancer patients. In conclusion, this study identified eight hub genes that play an important role in the pathways underlying EMT-induced chemoresistance in breast cancer and can be used as therapeutic targets after clinical validation.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mapas de Interação de Proteínas/genética , Análise de Sobrevida
3.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34282731

RESUMO

The gene-for-gene relationship of host-pathogen interaction explained by H. H. Flor in mid of the 20th century set a milestone in understanding the biochemical and genetic basis of plant diseases and several components involved in plant-pathogen interactions. It highlighted the importance of accomplishing differential sets and understanding the pathogen population structure, it further led to the identification and cloning of several resistance (R) genes in plants. These R genes have been deployed and altered for fighting against diseases in a large number of crops using various conventional approaches and biotechnological tools. Identification of R genes and their corresponding Avr genes in many cases played a significant role in understanding of R-Avr gene interactions. Rapid cloning of R genes and editing of susceptible R genes are the other avenues that have broadened the horizon of utilizing R genes in crop improvement programmes. Further, combining R genes with quantitative disease resistance genes has paved the way to develop durable resistance in cultivars. The recent advances in genetics, genomics, bioinformatics and other OMICS tools are now providing greater prospects for deeper understanding of host-pathogen interaction.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Genes vpr/genética , Doenças das Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Genômica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia
4.
Comput Biol Med ; 135: 104601, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186326

RESUMO

BACKGROUND: Breast tumors enriched with breast cancer stem cells (BCSCs), play a crucial role in metastasis and tumor relapse. Hence, targeting BCSCs may lead to efficacious breast cancer therapy. BCSCs have a unique expression of stemness markers, including Nanog, POU5F1, SOX2, and CD44, which play a vital role in cancer stem cell properties. However, the regulation of microRNAs (miRNAs)-mediated cancer stem cell marker expressions is largely unclear. METHODS: MIENTURNET was used to predict miRNA-target interactions. miR-TV, UALCAN and GEPIA databases were used to analyze the expression of miR-145-5p and SOX2. Survival analysis was obtained by cBioportal, KM plotter and Breast Cancer Gene-Expression Miner. RNAComposer was used to perform miRNA-mRNA duplex prediction. In vitro mRNA and miRNA analysis was performed by qRT-PCR. RESULTS: It was observed that miR-145-5p was the common miRNA targeting stemness markers. miR-145-5p expression was found to be lower in breast cancer patients compared to healthy subjects. Based on survival analysis, low expression of miR-145-5p and high expression of SOX2 led to a poor overall survival rate in breast cancer patients. Pathway enrichment analysis indicated that SOX2 was highly enriched with transcription factors. Moreover, SOX2 expression level was also upregulated in axillary metastatic lymph nodules. Further, in vitro ectopic expression of miR-145-5p by its mimic downregulated the SOX2 expression compared to the control mimic. Overall, SOX2 was a direct target for miR-145-5p as per the binding and minimal-free energy. CONCLUSIONS: In this study, miR-145-5p targeting SOX2 was identified as a potential predictive biomarker for breast cancer stemness.


Assuntos
Neoplasias da Mama , MicroRNAs , Biomarcadores , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
5.
Comput Biol Med ; 133: 104383, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33915361

RESUMO

BACKGROUND: Identification and repurposing of therapeutic and preventive strategies against COVID-19 are rapidly undergoing. Several medicinal plants from the Himalayan region have been traditionally used to treat various human disorders. Thus, in our current study, we intended to explore the potential ability of Himalayan medicinal plant (HMP) bioactives against COVID-19 using computational investigations. METHODS: Molecular docking was performed against six crucial targets involved in the replication and transmission of SARS-CoV-2. About forty-two HMP bioactives were analyzed against these targets for their binding energy, molecular interactions, inhibition constant, and biological pathway enrichment analysis. Pharmacological properties and potential biological functions of HMP bioactives were predicted using the ADMETlab and PASS webserver respectively. RESULTS: Our current investigation has demonstrated that the bioactives of HMPs potentially act against COVID-19. Docking results showed that several HMP bioactives had a superior binding affinity with SARS-CoV-2 essential targets like 3CLpro, PLpro, RdRp, helicase, spike protein, and human ACE2. Based on the binding energies, several bioactives were selected and analyzed for pathway enrichment studies. We have found that selected HMP bioactives may have a role in regulating immune and apoptotic pathways. Furthermore, these selected HMP bioactives have shown lower toxicity with pleiotropic biological activities, including anti-viral activities in predicting activity spectra for substances. CONCLUSIONS: Current study results can explore the possibility of HMPs as therapeutic agents against COVID-19.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA