Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482351

RESUMO

The gut and intestinal microbiota consists of trillions of microorganisms inhabiting the human gastrointestinal tract. It plays a crucial role in human health leading to understanding the dynamic crosstalk of host-microbe interaction in the gut and has become necessary for the detection, prevention, or therapy of diseases. Gut microbiota deviations are linked with many diseases, suggesting that various pathways involved in immunity, energy, lipid, and glucose metabolism are affected. Further, it is also altered by external insults such as metal toxicity, antibiotics and pesticides. Heavy metals like arsenic, mercury, cadmium and chromium are some of the well-studied classes of environmental pollutants. Mouse models have become the model of choice for most studies in this emerging field, as they allow perturbations in the gut microbiota to be studied in a controlled experimental setup. Here, we investigate the composition and diversity of intestinal microbes utilizing cecal samples from different intervention groups: arsenic exposure (As(III)), arsenic and piperine co-administration (As +Pp), piperine per se and control group. We obtained DNA samples from these groups and performed PCR amplification and sequencing of the 16S V3-V4 region. The findings showed shift in microbial composition and abundance among different intervention groups, revealing taxa that may contribute to the microbial diversity.

2.
J Biochem Mol Toxicol ; 37(12): e23485, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37593904

RESUMO

Gut microbiota plays a functionally important part in retaining the homeostasis of host physiology, however, under exposure of various heavy metals, the composition of gut biota is disturbed in relation to species diversity and richness. Ever since the increase of microbiome-related studies during the last decade, many research studies have delivered an understanding of the reasons and concerns of gut microbiota-related modifications. During the past decade, it's been confirmed from various studies that heavy metals poisoning alters the microbial composition, which results in changes in gene expression, alteration in metabolism, immunity, neurological dysfunction, and causes various other disorders. The present comprehensive review is summarizing an attempt to enumerate the key findings from recent clinical or preclinical studies related to the influence of heavy metals on gut microbiota published recently. Google, PubMed, Science Direct, Scopus, and Google Scholar were employed as primary search engines using the keywords such as "heavy metals, gut microbiota, dysbiosis, and intestinal microbiota" for finding relevant research articles from the past 10 years and some old important articles. Here, we tried to provide insight into some of the key timelines and scientific findings from reported literature, like the effects of heavy metals such as arsenic, cadmium, lead, and mercury on the general body and specifically on the gut microbiota of different model organisms. So, it is important to increase awareness against heavy metal-induced toxicity and formulate guidelines for the benefit of the environment.


Assuntos
Arsênio , Microbioma Gastrointestinal , Metais Pesados , Metais Pesados/toxicidade , Cádmio/toxicidade , Arsênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA