Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(15): 151101, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499892

RESUMO

Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of gauge invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the linearized vacuum field equations on Kerr-Newman-Unti-Tamburino spacetimes in terms of homogeneous solutions to the spin-2, spin-1, and spin-0 Teukolsky equations. We also derive Lorenz-gauge completion pieces representing mass and angular momentum perturbations of Kerr spacetime.

2.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720415

RESUMO

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

3.
Phys Rev Lett ; 125(1): 011103, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678665

RESUMO

Exploiting simple yet remarkable properties of relativistic gravitational scattering, we use first-order self-force (linear-in-mass-ratio) results to obtain arbitrary-mass-ratio results for the complete third-subleading post-Newtonian (4.5PN) corrections to the spin-orbit sector of spinning-binary conservative dynamics, for generic (bound or unbound) orbits and spin orientations. We thereby improve important ingredients of models of gravitational waves from spinning binaries, and we demonstrate the improvement in accuracy by comparing against aligned-spin numerical simulations of binary black holes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA