Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-18, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768041

RESUMO

Porous starch (PS), a modified form of starch with unique properties, is attracting substantial attention for its diverse advantages and applications. Its intricate porous structure, crystalline and amorphous characteristics, and hydrophilic-hydrophobic properties stem from pore formation via physical, chemical, enzymatic, and combined synergistic methods. Porous starch offers benefits like improved gelatinization temperature, water absorption, increased surface area, tunable crystallinity, and enhanced functional properties, making it appealing for diverse food industry applications. To optimize its properties, determining the parameters governing porous structure formation is crucial. Factors such as processing conditions, starch source, and modification methods substantially impact porosity and the overall characteristics of the material. Understanding and controlling these parameters allows customization for specific applications, from pharmaceutical drug delivery systems to enhancing texture and moisture retention in food products. To date, studies shedding light on how porosity formation can be fine-tuned for specific applications are fewer. This review critically assesses the existing reports on porous starch, focusing on how preparation methods affect porosity formation, thereby influencing the product's crystallinity/hydrophilic-hydrophobic nature and overall applicability.

2.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369891

RESUMO

Food industry is actively looking for alternative ingredients to replace saturated and trans fats in foods while preserving their original organoleptic attributes to ensure consumers' acceptance. A plausible approach is the replacement of solid fats with oleogels. Oleogels can be engineered to mimic properties that are commonly played by regular solid fats but using hydrophobic liquid vegetable oil with an optimum fatty acid profile and, they can also act as carriers for lipophilic bioactive substance. Low molecular weight oleogelators (LMOGs) are well studied and reviewed. In contrast, high molecular weight oleogelators (HMOGs) e.g., polysaccharides and proteins, are not fully researched yet. This review focusses on development of HMOG oleogels produced by means of emulsion templated, direct dispersion, foam templated and solvent exchange methods that can influence the stability, physicochemical properties and their potential application in food industry. Multi-component oleogels can solve the inefficiencies in a single component oleogel and, thus, combinations of HMOGs and HMOGs & LMOGs can produce oleogels with desired properties. These new oleogels can find application as fat substitutes in food products, providing better nutritional and sensory acceptance. A comprehensive overview of recent developments in the field of HMOG and multicomponent oleogels with HMOG is deeply reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA