Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(36): eabi9507, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516915

RESUMO

Hydrogen bond networks play a crucial role in biomolecules and molecular materials such as ices. How these networks react to pressure directs their properties at extreme conditions. We have studied one of the simplest hydrogen bond formers, hydrogen chloride, from crystallization to metallization, covering a pressure range of more than 2.5 million atmospheres. Following hydrogen bond symmetrization, we identify a previously unknown phase by the appearance of new Raman modes and changes to x-ray diffraction patterns that contradict previous predictions. On further compression, a broad Raman band supersedes the well-defined excitations of phase V, despite retaining a crystalline chlorine substructure. We propose that this mode has its origin in proton (H+) mobility and disorder. Above 100 GPa, the optical bandgap closes linearly with extrapolated metallization at 240(10) GPa. Our findings suggest that proton dynamics can drive changes in these networks even at very high densities.

2.
J Phys Chem Lett ; 9(19): 5785-5791, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30145904

RESUMO

In the past decade, the group V-VI compounds have been widely investigated due to their excellent properties and applications. It is now accepted that diverse stoichiometry can yield new compounds with unanticipated properties, uncovering potentially new physicochemical mechanisms. However, in this group, aside from the conventional A2B3-type, no other energetically stable stoichiometry has been reported yet. Here, we report that Bi2S3 is unstable and decomposes into stoichiometric BiS2 and BiS with different Bi valence states upon compression. Encouragingly, we successfully synthesized the predicted BiS2 phase and thus, confirmed its existence. Our current calculations reveal that the found BiS2 phase is a semimetal, associated with the increased concentration of nonmetallic S. The present results represent the first counterintuitive stable stoichiometry of group V-VI and provide a good example in designing and synthesizing new compounds under compression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA