Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem Biophys Res Commun ; 711: 149919, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38608435

RESUMO

Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Animais , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Humanos , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038133

RESUMO

Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.


Assuntos
Doenças Transmissíveis , Vírus da Influenza A , Vacinas contra Influenza , Animais , Camundongos , Hemaglutininas , Anticorpos Antivirais , Imunização , Vacinação , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Vírus da Influenza A/genética , Imunoglobulina G
3.
Sci Adv ; 8(38): eabo6783, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129989

RESUMO

In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin-mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2-induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2-induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.


Assuntos
COVID-19 , Claudina-5/metabolismo , SARS-CoV-2 , Claudina-5/genética , Células Endoteliais/metabolismo , Fluvastatina/metabolismo , Fluvastatina/farmacologia , Humanos , Proteínas de Junções Íntimas/metabolismo
4.
iScience ; 24(10): 103131, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622175

RESUMO

Current influenza vaccines do not typically confer cross-protection against antigenically mismatched strains. To develop vaccines conferring broader cross-protection, recent evidence indicates the crucial role of both cross-reactive antibodies and viral-specific CD4+ T cells; however, the precise mechanism of cross-protection is unclear. Furthermore, adjuvants that can efficiently induce cross-protective CD4+ T cells have not been identified. Here we show that CpG oligodeoxynucleotides combined with aluminum salts work as adjuvants for influenza vaccine and confer strong cross-protection in mice. Both cross-reactive antibodies and viral-specific CD4+ T cells contributed to cross-protection synergistically, with each individually ineffective. Furthermore, we found that downregulated expression of Fcγ receptor IIb on alveolar macrophages due to IFN-γ secreted by viral-specific CD4+ T cells improves the activity of cross-reactive antibodies. Our findings inform the development of optimal adjuvants for vaccines and how influenza vaccines confer broader cross-protection.

5.
Elife ; 102021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34693906

RESUMO

Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.


Assuntos
Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
6.
J Virol ; 95(20): e0118021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379511

RESUMO

Despite the availability of vaccines that efficiently reduce the severity of clinical symptoms, influenza viruses still cause substantial morbidity and mortality worldwide. In this regard, nasal influenza vaccines-because they induce virus-specific IgA-may be more effective than traditional parenteral formulations in preventing infection of the upper respiratory tract. In addition, the neuraminidase (NA) of influenza virus has shown promise as a vaccine antigen to confer broad cross-protection, in contrast to hemagglutinin (HA), the target of most current vaccines, which undergoes frequent antigenic changes, leading to vaccine ineffectiveness against mismatched heterologous strains. However, the usefulness of NA as an antigen for nasal vaccines is unclear. Here, we compared NA and HA as antigens for nasal vaccines in mice. Intranasal immunization with recombinant NA (rNA) plus adjuvant protected mice against not only homologous but also heterologous virus challenge in the upper respiratory tract, whereas intranasal immunization with rHA failed to protect against heterologous challenge. In addition, intranasal immunization with rNA, but not rHA, conferred cross-protection even in the absence of adjuvant in virus infection-experienced mice; this strong cross-protection was due to the broader capacity of NA-specific antibodies to bind to heterologous virus. Furthermore, the NA-specific IgA in the upper respiratory tract that was induced through rNA intranasal immunization recognized more epitopes than did the NA-specific IgG and IgA in plasma, again increasing cross-protection. Together, our findings suggest the potential of NA as an antigen for nasal vaccines to provide broad cross-protection against both homologous and heterologous influenza viruses. IMPORTANCE Because mismatch between vaccine strains and epidemic strains cannot always be avoided, the development of influenza vaccines that induce broad cross-protection against antigenically mismatched heterologous strains is needed. Although the importance of NA-specific antibodies to cross-protection in humans and experimental animals is becoming clear, the potential of NA as an antigen for providing cross-protection through nasal vaccines is unknown. We show here that intranasal immunization with NA confers broad cross-protection in the upper respiratory tract, where virus transmission is initiated, by inducing NA-specific IgA that recognizes a wide range of epitopes. These data shed new light on NA-based nasal vaccines as powerful anti-influenza tools that confer broad cross-protection.


Assuntos
Vacinas contra Influenza/imunologia , Neuraminidase/farmacologia , Orthomyxoviridae/imunologia , Adjuvantes Imunológicos , Administração Intranasal/métodos , Animais , Anticorpos Antivirais/imunologia , Proteção Cruzada , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/metabolismo , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/imunologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/virologia , Vacinação/métodos
7.
Biochem Biophys Res Commun ; 554: 166-172, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33798943

RESUMO

Although influenza vaccines are effective for reducing viral transmission and the severity of clinical symptoms, influenza viruses still induce considerable morbidity and mortality worldwide. Seasonal influenza viruses infect the upper respiratory tract initially but then often induce severe pulmonary complications in the lower respiratory tract. Therefore, influenza vaccines that prevent viral infection at both the upper and lower respiratory tracts are highly anticipated. Here, we examined whether using different vaccination routes for priming and boosting achieved protection in both regions of the respiratory tract. To this end, we used inactivated whole-virion influenza vaccines to immunize mice either subcutaneously or intranasally for both priming and boosting. Regardless of the route used for boosting, the levels of virus-specific IgG in plasma were higher in mice primed subcutaneously than those in control mice, which received PBS only. In addition, intranasal priming followed by subcutaneous boosting induced higher levels of virus-specific IgG in plasma than those in control mice. The levels of virus-specific nasal IgA were higher in mice that were primed intranasally than in control mice or in mice primed subcutaneously. Furthermore, intranasal priming but not subcutaneous priming provided protection against viral challenge in the upper respiratory tract. In addition, when coupled with subcutaneous boosting, both subcutaneous and intranasal priming protected against viral challenge in the lower respiratory tract. These results indicate that intranasal priming followed by subcutaneous boosting induces both virus-specific IgG in plasma and IgA in nasal washes and protects against virus challenge in both the upper and lower respiratory tracts. Our results will help to develop novel vaccines against influenza viruses and other respiratory viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Infecções Respiratórias/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Vacinas contra Influenza/imunologia , Injeções Subcutâneas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae/isolamento & purificação , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
Vaccines (Basel) ; 8(3)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756368

RESUMO

Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.

9.
Heliyon ; 6(6): e04301, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637694

RESUMO

Vaccination is one of the most effective interventions for preventing the spread of influenza viruses at the population level. Currently most influenza vaccines are produced by using embryonated chicken eggs, but alternative methods that achieve more rapid large-scale production are highly desirable for vaccines against both pandemic and seasonal influenza viruses. The use of recombinant hemagglutinin (HA), a key virus surface protein, as an antigen is an attractive candidate alternative approach, because of the potential for high protein yields and the ease of cloning new antigenic variants. Although fusion of HA with trimerization domains is needed to stabilize the trimeric structure and enhance the immunogenicity of the recombinant HA protein, whether the trimerization domains are immunogenic must be considered. Here, we generated recombinant multimeric HA without trimerization domains by using a short peptide linker, termed a single-chain HA (scHA), and evaluated scHAs as potential antigens for generating vaccines against influenza virus. Using mammalian cells, we succeeded in making three types of recombinant scHAs-two dimeric scHAs and a trimeric scHA. After immunization with aluminium salts in mice, one of the dimeric scHAs induced the greatest HA-specific IgG response among the scHAs and protected against virus challenge as strongly as the typically used trimeric HA containing a trimerization domain. We did not observe IgGs specific for the short peptide linker in mice immunized with the dimeric scHA, although IgGs specific for the trimerization domain occurred in mice immunized with the trimeric HA containing that domain. Furthermore, changing to another adjuvant did not diminish the utility of the dimeric scHA. These results suggest the potential usefulness of dimeric scHA as a vaccine antigen. We believe that single-chain antigens may represent new alternatives for production of recombinant antigen-based vaccines.

10.
J Artif Organs ; 22(2): 146-153, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30426250

RESUMO

Recent evidence on maintenance administration of epoetin beta pegol, a continuous erythropoiesis receptor activator (CERA), in dialysis patients shows the clinical benefit of bi-weekly administration (Q2W) in improving hematopoiesis and iron use efficiency. We undertook a single-center observational study of 33 Japanese maintenance dialysis patients, whose anemia had been kept stable through weekly administration (Q1W) of darbepoetin (DA), to evaluate the effectiveness of CERA Q2W switched from DA in maintaining hemoglobin (Hb) levels over a 12-month period. The target Hb level was 10.0-12.0 g/dL. Throughout the 12-month period, the mean Hb was stably maintained at 10.5-10.8 g/dL, 69.7-87.9% of the patients achieving the target Hb level. The mean CERA dose was within the range of 62.9-78.8 µg/2 weeks. The average CERA dose adjustment frequency after switching was low at 0.42-0.67 times/3 months. In both subgroups stratified by the DA dose prior to the switch, Hb levels were kept stable during CERA administration; however, in the low-dose group (10-20 µg/week of DA), the CERA and iron doses decreased over time, whereas in the high-dose group (30-60 µg/week of DA) they remained unchanged. CERA Q2W achieved long-term successful anemia management in Japanese maintenance dialysis patients after switching from DA Q1W. CERA dose was adjusted based on an overall consideration of past changes in Hb levels, erythropoiesis-stimulating agent and iron doses. Subgroup analysis showed the CERA dose in the low-dose group decreased continuously, due possibly to a long-term improvement in iron use efficiency.


Assuntos
Anemia/tratamento farmacológico , Darbepoetina alfa/uso terapêutico , Eritropoetina/uso terapêutico , Hematínicos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Diálise Renal , Idoso , Feminino , Hemoglobinas/metabolismo , Humanos , Ferro/administração & dosagem , Japão , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Front Immunol ; 10: 3018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998305

RESUMO

Current influenza vaccines are generally effective against highly similar (homologous) strains, but their effectiveness decreases markedly against antigenically mismatched (heterologous) strains. One way of developing a universal influenza vaccine with a broader spectrum of protection is to use appropriate vaccine adjuvants to improve a vaccine's effectiveness and change its immune properties. Oligodeoxynucleotides (ODNs) with unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG ODNs), which are Toll-like-receptor 9 (TLR9) agonists, are among the most promising adjuvants and are already being used in humans. However, the development of novel delivery vehicles to improve adjuvant effects in vivo is highly desirable. Here, we assessed the potential of lipid nanoparticles (LNPs) as CpG ODN delivery vehicles in mice to augment the vaccine adjuvant effects of CpG ODN and enhance the protective spectrum of conventional influenza split vaccine (SV). In vitro, compared with CpG ODN, LNPs containing CpG ODNs (LNP-CpGs) induced significantly greater production of cytokines such as IL-12 p40 and IFN-α by mouse dendritic cells (DCs) and significantly greater expression of the co-stimulatory molecules CD80 and CD86 on DCs. In addition, after subcutaneous administration in mice, compared with CpG ODN, LNP-CpGs enhanced the expression of CD80 and CD86 on plasmacytoid DCs in draining lymph nodes. LNP-CpGs given with SV from H1N1 influenza A virus improved T-cell responses and gave a stronger not only SV-specific but also heterologous-virus-strain-specific IgG2c response than CpG ODN. Furthermore, immunization with SV plus LNP-CpGs protected against not only homologous strain challenge but also heterologous and heterosubtypic strain challenge, whereas immunization with SV plus CpG ODNs protected against homologous strain challenge only. We therefore demonstrated that LNP-CpGs improved the adjuvant effects of CpG ODN and broadened the protective spectrum of SV against influenza virus. We expect that this strategy will be useful in developing adjuvant delivery vehicles and universal influenza vaccines.


Assuntos
Citosina/imunologia , Guanina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Lipídeos/imunologia , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Fosfatos/imunologia , Animais , Anticorpos Antivirais/imunologia , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinação/métodos
12.
Int J Clin Oncol ; 12(6): 482-4, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18071870

RESUMO

We report the case of a 68-year-old Japanese man who presented with postrenal azotemia due to bilateral upper ureteral stenosis. The patient's right kidney was nonfunctional; therefore, right nephroureterectomy was performed for the purpose of pathologic diagnosis. Histopathologic examination revealed follicular lymphoma with diffuse change in the ureter. With chemotherapy for malignant lymphoma, the stenosis of the left ureter was alleviated, and left renal function was preserved. Primary malignant lymphoma of the ureter is extremely rare. In cases of ureteral stenosis with ureteral wall thickening for which the cause is uncertain, the possibility of malignant lymphoma of the ureter should be considered.


Assuntos
Linfoma Folicular/diagnóstico , Linfoma Folicular/cirurgia , Neoplasias Uretrais/diagnóstico , Neoplasias Uretrais/cirurgia , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
13.
Extremophiles ; 11(1): 85-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16896527

RESUMO

We have isolated and characterized a gene for a putative protein-disulfide oxidoreductase (phdsb) in the archaeon Pyrococcus horikoshii. The open reading frame of phdsb encodes a protein of 170 amino acids with an NH(2)-terminal extension similar to the bacterial signal peptides. The putative mature region of PhDsb includes a sequence motif, Cys-Pro-His-Cys (CPHC), that is conserved in members of the bacterial DsbA family, but otherwise the archaeal and bacterial sequences do not show substantial similarity. A recombinant protein corresponding to the predicted mature form of PhDsb behaved as a monomer and manifested oxidoreductase activities in vitro similar to those of DsbA of Escherichia coli. The catalytic activity of PhDsb was thermostable and was shown by mutation analysis to depend on the NH(2)-terminal cysteine residue of the CPHC motif. Thus, in spite of their low overall sequence similarities, DsbA-like proteins of archaea and bacteria appear to be highly similar in terms of function.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Pyrococcus horikoshii/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Clonagem Molecular , Sequência Conservada , Bases de Dados de Proteínas , Estabilidade Enzimática , Dados de Sequência Molecular , Mutação , Proteína Dissulfeto Redutase (Glutationa)/química , Proteína Dissulfeto Redutase (Glutationa)/genética , Isomerases de Dissulfetos de Proteínas/química , Sinais Direcionadores de Proteínas , Pyrococcus horikoshii/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Temperatura
14.
Proteomics ; 6(1): 54-66, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16287168

RESUMO

Cypoviruses are insect viruses that produce a cytoplasmic crystalline particle called the polyhedron in which progeny virions are occluded. The virion structural protein, VP3, is implicated in the occlusion of viral particles into polyhedra. In this study, we determined the amino acid sequence of VP3 required for occlusion of viral particles into polyhedra and proposed that this sequence could be used as an immobilization signal to direct the stable incorporation of foreign proteins into polyhedra. A large-scale survey revealed that the immobilization signal could, in fact, direct the incorporation of a variety of human proteins into polyhedra. Immune reactivity and protein-protein interactions were detected on the surface of polyhedra containing immobilized foreign proteins, and these particles were shown to be highly stabilized against dehydration. We showed that these particles could be arrayed onto a glass slide by standard spotting and laser manipulation methods. Thus, this approach is well suited for protein expression, purification, and the development of protein microarrays.


Assuntos
Análise Serial de Proteínas , Proteínas/química , Reoviridae/química , Animais , Linhagem Celular , Humanos , Microscopia Confocal , Microscopia Imunoeletrônica , Espectrometria de Fluorescência , Spodoptera
15.
J Biol Chem ; 279(6): 4657-62, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14613932

RESUMO

Activated receptor tyrosine kinases bind the Shc adaptor protein through its N-terminal phosphotyrosine-binding (PTB) and C-terminal Src homology 2 (SH2) domains. After binding, Shc is phosphorylated within the central collagen-homology (CH) linker region on Tyr-317, a residue remote to both the PTB and SH2 domains. Shc phosphorylation plays a pivotal role in the initiation of mitogenic signaling through the Ras/Raf/MEK/ERK pathway, but it is unclear if Tyr-317 phosphorylation affects Shc-receptor interactions through the PTB and SH2 domains. To investigate the structural impact of Shc phosphorylation, molecular dynamics simulations were carried out using special-purpose Molecular Dynamics Machine-Grape computers. After a 1-nanosecond equilibration, atomic motions in the structures of unphosphorylated Shc and Shc phosphorylated on Tyr-317 were calculated during a 2-nanosecond period. The results reveal larger phosphotyrosine-binding domain fluctuations and more structural flexibility of unphosphorylated Shc compared with phosphorylated Shc. Collective motions between the PTB-SH2, PTB-CH, and CH-SH2 domains were highly correlated only in unphosphorylated Shc. Dramatic changes in domain coupling and structural rigidity, induced by Tyr-317 phosphorylation, may alter Shc function, bringing about marked differences in the association of unphosphorylated and phosphorylated Shc with its numerous partners, including activated membrane receptors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sítios de Ligação , Técnicas In Vitro , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Adaptadoras da Sinalização Shc , Termodinâmica , Tirosina/química , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA