RESUMO
Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.
Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Simulação de Dinâmica Molecular , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Transporte Proteico , Animais , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/química , Proteínas Associadas a Gotículas Lipídicas/genéticaRESUMO
1 : 2 Choline-and-geranate (CAGE) is an ionic liquid (IL) widely studied for its biomedical applications. However, both its industrial-scale preparation and its long-term storage are problematic so finding more suitable candidates which retain its advantageous properties is crucial. As a first step towards this we have conducted a targeted modification study to understand the effects of specific functional groups on the properties of CAGE. 1 : 2 Choline-and-octanoate and 1 : 2 butyltrimethylammonium-and-octanoate were synthesised and their thermal and rheological properties examined in comparison to those of CAGE. Using differential scanning calorimetry and polarising microscopy, the model compound was found to be an isotropic liquid, while the analogues were room-temperature liquid-crystals which transition to isotropic liquids upon heating. Dynamic mechanical analysis showed that the thermal behaviour of the studied systems was even more complex, with the ILs also undergoing a thermally-activated relaxation process. Furthermore, we have used electron paramagnetic resonance (EPR) spectroscopy, along with a variety of spin probes with different functional groups, in order to understand the chemical environment experienced by solutes in each system. The EPR spectra indicate that the radicals experience two distinct environments (polar and nonpolar) in the liquid-crystalline phase, but only one average environment in the isotropic phase. The liquid-crystalline phase experiments also showed that the relative populations of the two domains depend on the nature of the solutes, with polar or strongly hydrogen-bonding solutes preferring the polar domain. For charged solutes, the EPR spectra showed line-broadening, suggesting that their ionic nature leads to complex, unresolved interactions.
RESUMO
Room temperature ionic liquids typically contain asymmetric organic cations. The asymmetry is thought to enhance disorder, thereby providing an entropic counter-balance to the strong, enthalpic, ionic interactions, and leading, therefore, to lower melting points. Unfortunately, the synthesis and purification of such asymmetric cations is typically more demanding. Here we introduce novel room temperature ionic liquids in which both cation and anion are formally symmetric. The chemical basis for this unprecedented behaviour is the incorporation of ether-containing side chains - which increase the configurational entropy - in the cation. Molecular dynamics simulations indicate that the ether-containing side chains transiently sample curled configurations. Our results contradict the long-standing paradigm that at least one asymmetric ion is required for ionic liquids to be molten at room temperature, and hence open up new and simpler design pathways for these remarkable materials.
RESUMO
Microwave (MW) resonators in Electron Paramagnetic Resonance (EPR) spectroscopy concentrate the MW magnetic field (B1) at the sample and separate the MW electric field from the sample. There are numerous experimental methods in EPR spectroscopy which all impose different requirements on MW resonators (e.g. high or low quality factor, MW conversion, and B1-field homogeneity). Although commercial spectrometers offer standardized MW resonators for a broad application range, newly emerging and highly-specialized research fields push these spectrometers to or beyond their sensitivity limits. Optimizing the MW resonator offers one direct approach to improve the sensitivity. Here we present three low-cost optimization approaches for a commercially available X-band (9-10 GHz) MW resonator for three experimental purposes (continuous-wave (CW), transient and pulse EPR). We obtain enhanced MW conversion factors for all three optimized resonators and higher quality factors for two optimized resonators. The latter is important for CW and transient EPR. Furthermore, we fabricated a resonator which features an extended area of homogeneous B1-field and, hence, improved pulse EPR performance. Our results demonstrate that small changes to a commercial MW resonator can enhance its performance in general or for specific applications.
RESUMO
Health precautions implemented by the United Kingdom (UK) government to limit the spread of the Coronavirus Disease 2019 (COVID-19) led to the closure of many well-being support services in 2020. This created a need to re-think how impactful recovery support courses can be provided. One such service was that of the five-day Multi Activity Course (MAC) which was redesigned in accordance with national health guidelines to allow continued access for Wounded, Injured and Sick (WIS) military personnel to the service; the positive impacts of which are well established. This study investigated the influence of the newly developed Reduced numbers MAC (R-MAC) on the WIS participants lives during and for 12 months after attending. The R-MAC led to comparable impacts for participants well-being, at a time in which people's mental well-being was often being adversely affected. The positive mental well-being of the 261 participants improved by 33% throughout the course and remained 14% higher for the 37 participants who provided data six months after attending. Key facets of the experience that were most impactful for the participants were (i) shared experience with other veterans, (ii) discussing issues in a safe environment while receiving support from the staff and (iii) developing knowledge around self-help/personal development. Adapting to the challenging circumstances and developing the R-MAC mitigated against the already adverse impact of the COVID-19 pandemic for the WIS participants.
Assuntos
COVID-19 , Militares , Humanos , COVID-19/epidemiologia , Militares/psicologia , Pandemias , Saúde Mental , Reino Unido/epidemiologiaRESUMO
The photoexcited triplet state of octaethylaluminum(III)-porphyrin (AlOEP) was investigated by time-resolved Electron Paramagnetic Resonance, Electron Nuclear Double Resonance and Electron Spin Echo Envelope Modulation in an organic glass at 10 and 80 K. This main group element porphyrin is unusual because the metal has a small ionic radius and is six-coordinate with axial covalent and coordination bonds. It is not known whether triplet state dynamics influence its magnetic resonance properties as has been observed for some transition metal porphyrins. Together with density functional theory modelling, the magnetic resonance data of AlOEP allow the temperature dependence of the zero-field splitting (ZFS) parameters, D and E, and the proton AZZ hyperfine coupling (hfc) tensor components of the methine protons, in the zero-field splitting frame to be determined. The results provide evidence that the ZFS, hfc and spin-lattice relaxation are indeed influenced by the presence of a dynamic process that is discussed in terms of Jahn-Teller dynamic effects. Thus, these effects should be taken into account when interpreting EPR data from larger complexes containing AlOEP.
RESUMO
Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.
RESUMO
Partially or fully reduced transition metal oxides show extraordinary electronic and catalytic properties but are usually prepared by high temperature reduction reactions. This study reports the systematic investigation of the fast mechanochemical reduction of rutile-type TiO2 and H-Nb2 O5 to their partially reduced black counterparts applying NaH and LiH as reducing agents. Milling time and oxide to reducing agent ratio show a large influence on the final amount of reduced metal ions in the materials. For both oxides LiH shows a higher reducing potential than NaH. An intercalation of Li+ into the structure of the oxides was proven by PXRD and subsequent Rietveld refinements as well as 6 Li solid-state NMR spectroscopy. The products showed a decreased band gap and the presence of unpaired electrons as observed by EPR spectroscopy, proving the successful reduction of Ti4+ and Nb5+ . Furthermore, the developed material exhibits a significantly enhanced photocatalytic performance towards the degradation of methylene blue compared to the pristine oxides. The presented method is a general, time efficient and simple method to obtain reduced transition metal oxides.
RESUMO
Electrophilic AlIII species have long dominated the aluminum reactivity towards arenes. Recently, nucleophilic low-valent AlI aluminyl anions have showcased oxidative additions towards arenes C-C and/or C-H bonds. Herein, we communicate compelling evidence of an AlII radical addition reaction to the benzene ring. The electron reduction of a ligand stabilized precursor with KC8 in benzene furnishes a double addition to the benzene ring instead of a C-H bond activation, producing the corresponding cyclohexa-1,3(orl,4)-dienes as Birch-type reduction product. X-ray crystallographic analysis, EPR spectroscopy, and DFT results suggest this reactivity proceeds through a stable AlII radical intermediate, whose stability is a consequence of a rigid scaffold in combination with strong steric protection.
RESUMO
Lignin-based chemicals and biomaterials will be feasible alternatives to their fossil-fuel-based counterparts once their breakdown into constituents is economically viable. The existing commercial market for lignin remains limited due to its complex heterogenous structure and lack of extraction/depolymerization techniques. Hence, in the present study, a novel low-cost ammonium-based protic ionic liquid (PIL), 2-hydroxyethyl ammonium lactate [N11H(2OH)][LAC], is used for the selective fractionation and improved extraction of lignin from Scots pine (Pinus sylvestris) softwood biomass (PWB). The optimization of three process parameters, viz., the incubation time, temperature, and biomass:PIL (BM:PIL) ratio, was performed to determine the best pretreatment conditions for lignin extraction. Under the optimal pretreatment conditions (180 °C, 3 h, and 1:3 BM:PIL ratio), [N11H(2OH)][LAC] yielded 61% delignification with a lignin recovery of 56%; the cellulose content of the recovered pulp was approximately 45%. Further, the biochemical composition of the recovered lignin and pulp was determined and the recovered lignin was characterized using 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, quantitative 31P NMR, gel permeation chromatography (GPC), attenuated total reflectance (ATF)-Fourier transform infrared spectroscopy (ATR-FTIR), and thermal gravimetric analysis (TGA) analysis. Our results reveal that [N11H(2OH)][LAC] is significantly involved in the cleavage of predominant ß-O-4' linkages for the generation of aromatic monomers followed by the in situ depolymerization of PWB lignin. The simultaneous extraction and depolymerization of PWB lignin favors the utilization of recalcitrant pine biomass as feedstock for biorefinery schemes.
RESUMO
Ionic liquids are becoming increasingly popular for practical applications such as biomass processing and lithium-ion batteries. However, identifying ionic liquids with optimal properties for specific applications by trial and error is extremely inefficient since there are a vast number of potential candidate ions. Here we combine experimental and computational techniques to determine how the interplay of fluorination, flexibility and mass affects the transport properties of ionic liquids with the popular imide anion. We observe that fluorination and flexibility have a large impact on properties such as viscosity, whereas the influence of mass is negligible. Using targeted modifications, we show that conformational flexibility provides a significant contribution to the success of fluorination as a design element. Contrary to conventional wisdom, fluorination by itself is thus not a guarantor for beneficial properties such as low viscosity.
RESUMO
Understanding the connection between the molecular structure of ionic liquids and their properties is of paramount importance for practical applications. However, this connection can only be established if a broad range of physicochemical properties on different length and time scales is already available. Even then, the interpretation of the results often remains ambiguous due to the natural limits of experimental approaches. Here we use fast-field cycling (FFC) to access both translational and rotational dynamics of ionic liquids. These combined with a comprehensive physicochemical characterization and MD simulations provide a toolkit to give insight into the mechanisms of molecular mechanics. The FFC results are consistent with the computer simulation and conventional physicochemical approaches. We show that curling of the side chains around the positively charged cationic core is essential for the properties of ether-functionalized ionic liquids, and we demonstrate that neither geometry nor polarity alone are sufficient to explain the macroscopic properties.
Assuntos
Líquidos Iônicos , Éter , Líquidos Iônicos/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura MolecularRESUMO
In this study, we address the fundamental question of the physicochemical and electrochemical properties of phosphonium-based ionic liquids containing the counter-ions bis(trifluoromethanesulfonyl)imide ([TFSI]-) and bis(fluorosulfonyl)imide ([FSI]-). To clarify these structure-property as well as structure-activity relationships, trimethyl-based alkyl- and ether-containing phosphonium ILs were systematically synthesized, and their properties, namely density, flow characteristics, alkali metal compatibility, oxidative stability, aluminum corrosivity as well as their use in Li-ion cells were examined comprehensively. The variable moiety on the phosphonium cation exhibited a chain length of four and five, respectively. The properties were discussed as a function of the side chain, counter-ion and salt addition ([Li][TFSI] or [Li][FSI]). High stability coupled with good flow characteristics were found for the phosphonium IL [P1114][TFSI] and the mixture [P1114][TFSI] + [Li][TFSI], respectively.
RESUMO
Meaningful, positive, emotional and challenging adventurous activities may generate personal growth or recovery from ill health or injury. In this study, we used a distinctive longitudinal and immersive research approach to explore the psychological impact of a high-altitude expedition to the Nepalese Himalaya on 10 (9 males) UK military veterans with longstanding well-being concerns. In the 12 months prior to the expedition, participants took part in three training weekends in the UK mountains. During the expedition, instructors-who were all experienced health coaches-facilitated reflective practices with the beneficiaries throughout, focusing on experiential transfer to day-to-day lives after the expedition. Follow-up interviews, conducted up to 18-months post-expedition, identified that the most desirable changes aligned with the three innate psychological needs of self-determination theory: autonomy, competence and relatedness. The routines established during the preparation stage and during the expedition itself activated a renewed energy for personal improvement. At 18 months post-expedition, the key changes reflected altered perspective, employment skills and work-life balance, increased physical activity and enhanced personal awareness and mindfulness. Importantly, supported by regular health coaching and focused on the transfer of learning, expeditions can activate meaningful long-term changes to the well-being and personal development of military veterans.
Assuntos
Expedições , Montanhismo , Veteranos , Altitude , Humanos , Masculino , Montanhismo/fisiologia , Reino UnidoRESUMO
Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.
Assuntos
Iminas , Paládio , Catálise , Iminas/química , LigantesRESUMO
Room temperature ionic liquids are considered to have huge potential for practical applications such as batteries. However, their high viscosity presents a significant challenge to their use changing from niche to ubiquitous. The modelling and prediction of viscosity in ionic liquids is the subject of an ongoing debate involving two competing hypotheses: molecular and local mechanisms versus collective and long-range mechanisms. To distinguish between these two theories, we compared an ionic liquid with its uncharged, isoelectronic, isostructural molecular mimic. We measured the viscosity of the molecular mimic at high pressure to emulate the high densities in ionic liquids, which result from the Coulomb interactions in the latter. We were thus able to reveal that the relative contributions of coulombic compaction and the charge network interactions are of similar magnitude. We therefore suggest that the optimisation of the viscosity in room temperature ionic liquids must follow a dual approach.
RESUMO
In this work we investigate the structure-property relationships in a series of alkylimidazolium ionic liquids with almost identical molecular weight. Using a combination of theoretical calculations and experimental measurements, we have shown that re-arranging the alkyl side chain or adding functional groups results in quite distinct features in the resultant ILs. The synthesised ILs, although structurally very similar, cover a wide spectrum of properties ranging from highly fluid, glass forming liquids to high melting point crystalline salts. Theoretical ab initio calculations provide insight on minimum energy orientations for the cations, which then are compared to experimental X-ray crystallography measurements to extract information on hydrogen bonding and to verify our understanding of the studied structures. Molecular dynamics simulations of the simplest (core) ionic liquids are used in order to help us interpret our experimental results and understand better why methylation of C2 position of the imidazolium ring results in ILs with such different properties compared to their non-methylated analogues.
RESUMO
Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.
Assuntos
DNA de Cinetoplasto/genética , Hibridização Genética/genética , Trypanosoma brucei brucei/genética , Trypanosoma/genética , Animais , DNA Mitocondrial/genética , DNA de Protozoário/genética , Genótipo , Humanos , Tripanossomíase Africana/genéticaRESUMO
Few adventurous training courses have been formally designed to assist military personnel in their recovery and/or transition into civilian life by supporting psychological health and well-being. This study examines, for the first time, the longitudinal effects of a five-day Multi Activity Course (MAC) on the mental well-being of serving but wounded, injured, and/or sick (WIS) UK armed forces personnel. The MAC is delivered using a participant-centered approach to encourage engagement in adaptive sports, adventurous activities, and personal development coaching sessions. This work extends previous research showing powerful short-term well-being benefits. Measures of positive well-being and psychological need satisfaction were provided by participants before and after attending the course, as well as two weeks, three months, six months and 12 months later. Self-reported well-being measures of psychological need satisfaction and positive mental well-being improved significantly throughout the course. These remained significantly higher at six and 12 months after the course, respectively.
RESUMO
Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids - slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation-anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure-property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure-property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.