Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 27140-27148, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048072

RESUMO

Most flavin-dependent enzymes contain a dissociable flavin cofactor. We present a new approach for installing in vivo a covalent bond between a flavin cofactor and its host protein. By using a flavin transferase and carving a flavinylation motif in target proteins, we demonstrate that "dissociable" flavoproteins can be turned into covalent flavoproteins. Specifically, four different flavin mononucleotide-containing proteins were engineered to undergo covalent flavinylation: a light-oxygen-voltage domain protein, a mini singlet oxygen generator, a nitroreductase, and an old yellow enzyme-type ene reductase. Optimizing the flavinylation motif and expression conditions led to the covalent flavinylation of all four flavoproteins. The engineered covalent flavoproteins retained function and often exhibited improved performance, such as higher thermostability or catalytic performance. The crystal structures of the designed covalent flavoproteins confirmed the designed threonyl-phosphate linkage. The targeted flavoproteins differ in fold and function, indicating that this method of introducing a covalent flavin-protein bond is a powerful new method to create flavoproteins that cannot lose their cofactor, boosting their performance.


Assuntos
Flavinas , Flavoproteínas , Flavoproteínas/química , Flavinas/química , Transferases/metabolismo , Ligação Proteica , Flavina-Adenina Dinucleotídeo/metabolismo
2.
Chembiochem ; 24(24): e202300588, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37800383

RESUMO

The chemical 5-hydroxymethylfurfural (HMF) can be derived from lignocellulose and is an interesting bio-based platform chemical as it has the potential to be transformed into numerous valuable building blocks such as the polymer-precursor 2,5-diformylfuran (DFF). To date, only a few oxidases acting on HMF are known and by sampling atypical species, we discovered a novel flavin-dependent oxidoreductase from the honeybee Apis mellifera (beeHMFO). The enzyme can perform the chemoselective oxidation of HMF to DFF but can also readily accept other aromatic alcohols as substrates. The function of the enzyme may well be the antimicrobial generation of hydrogen peroxide using HMF, which is very abundant in honey. The discovery of this insect-derived flavoprotein oxidase holds promising potential in the synthesis of renewable products and demonstrates that insects can be an interesting source of novel biocatalysts.


Assuntos
Furanos , Oxirredutases , Abelhas , Animais , Flavoproteínas , Furaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA