Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 15(1): 848, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287033

RESUMO

Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double-strand break (DSB) formation, and disruption of meiotic gene expression and DSB repair in germ cells lacking NELF.


Assuntos
RNA Polimerase II , Sêmen , Masculino , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Sêmen/metabolismo , Meiose/genética , Espermatogênese/genética , Expressão Gênica
2.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215034

RESUMO

Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to mature spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double strand break formation by SPO11, and disruption of SPO11 expression in germ cells lacking NELF.

3.
Mol Cell ; 82(6): 1156-1168.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35219383

RESUMO

N6-methyladenosine (m6A) methylation is co-transcriptionally deposited on mRNA, but a possible role of m6A on transcription remains poorly understood. Here, we demonstrate that the METTL3/METTL14/WTAP m6A methyltransferase complex (MTC) is localized to many promoters and enhancers and deposits the m6A modification on nascent transcripts, including pre-mRNAs, promoter upstream transcripts (PROMPTs), and enhancer RNAs. PRO-seq analyses demonstrate that nascent RNAs originating from both promoters and enhancers are significantly decreased in the METTL3-depleted cells. Furthermore, genes targeted by the Integrator complex for premature termination are depleted of METTL3, suggesting a potential antagonistic relationship between METTL3 and Integrator. Consistently, we found the Integrator complex component INTS11 elevated at promoters and enhancers upon loss of MTC or nuclear m6A binders. Taken together, our findings suggest that MTC-mediated m6A modification protects nascent RNAs from Integrator-mediated termination and promotes productive transcription, thus unraveling an unexpected layer of gene regulation imposed by RNA m6A modification.


Assuntos
Cromatina , Metiltransferases , Cromatina/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Cell Rep ; 22(12): 3227-3239, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562179

RESUMO

Little is known about how variation in sequence composition alters transcription factor occupancy to precisely recruit large transcription complexes. A key model for understanding how transcription complexes are targeted is the Drosophila dosage compensation system in which the male-specific lethal (MSL) transcription complex specifically identifies and regulates the male X chromosome. The chromatin-linked adaptor for MSL proteins (CLAMP) zinc-finger protein targets MSL to the X chromosome but also binds to GA-rich sequence elements throughout the genome. Furthermore, the GAGA-associated factor (GAF) transcription factor also recognizes GA-rich sequences but does not associate with the MSL complex. Here, we demonstrate that MSL complex recruitment sites are optimal CLAMP targets. Specificity for CLAMP binding versus GAF binding is driven by variability in sequence composition within similar GA-rich motifs. Therefore, variation within seemingly similar cis elements drives the context-specific targeting of a large transcription complex.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Animais , Feminino , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Masculino , Cromossomos Sexuais , Cromossomo X
5.
Mol Cell Biol ; 37(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784719

RESUMO

Chromatin entry sites (CES) are 100- to 1,500-bp elements that recruit male-specific lethal (MSL) complexes to the X chromosome to upregulate expression of X-linked genes in male flies. CES contain one or more ∼20-bp GA-rich sequences called MSL recognition elements (MREs) that are critical for dosage compensation. Recent studies indicate that CES also correspond to boundaries of X-chromosomal topologically associated domains (TADs). Here, we show that an ∼1,000-kDa complex called the late boundary complex (LBC), which is required for the functioning of the Bithorax complex boundary Fab-7, interacts specifically with a special class of CES that contain multiple MREs. Mutations in the MRE sequences of three of these CES that disrupt function in vivo abrogate interactions with the LBC. Moreover, reducing the levels of two LBC components compromises MSL recruitment. Finally, we show that several of the CES that are physically linked to each other in vivo are LBC interactors.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomo X/genética , Animais , Mecanismo Genético de Compensação de Dose , Genes Ligados ao Cromossomo X , Loci Gênicos , Elementos Isolantes , Masculino , Mutação
6.
PLoS Genet ; 12(7): e1006120, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414415

RESUMO

Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Repetições de Dinucleotídeos , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomo X/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , DNA/química , Feminino , Dosagem de Genes , Genes Ligados ao Cromossomo X , Ligação Genética , Genoma de Inseto , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA