Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Malar J ; 23(1): 156, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773487

RESUMO

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Malária , Controle de Mosquitos , Mosquitos Vetores , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Malária/prevenção & controle , Malária/transmissão , Animais , Anopheles/genética , Tecnologia de Impulso Genético/métodos
2.
Mol Ecol Resour ; 24(4): e13949, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511493

RESUMO

Diapause, a form of dormancy to delay or halt the reproductive development during unfavourable seasons, has evolved in many insect species. One example is aestivation, an adult-stage diapause enhancing malaria vectors' survival during the dry season (DS) and their re-establishment in the next rainy season (RS). This work develops a novel genetic approach to estimate the number or proportion of individuals undergoing diapause, as well as the breeding sizes of the two seasons, using signals from temporal allele frequency dynamics. Our modelling shows the magnitude of drift is dampened at early RS when previously aestivating individuals reappear. Aestivation severely biases the temporal effective population size ( N e $$ {N}_e $$ ), leading to overestimation of the DS breeding size by 1 / 1 - α 2 $$ 1/{\left(1-\alpha \right)}^2 $$ across 1 year, where α $$ \alpha $$ is the aestivating proportion. We find sampling breeding individuals in three consecutive seasons starting from an RS is sufficient for parameter estimation, and perform extensive simulations to verify our derivations. This method does not require sampling individuals in the dormant state, the biggest challenge in most studies. We illustrate the method by applying it to a published data set for Anopheles coluzzii mosquitoes from Thierola, Mali. Our method and the expected evolutionary implications are applicable to any species in which a fraction of the population diapauses for more than one generation, and are difficult or impossible to sample during that stage.


Assuntos
Anopheles , Diapausa , Malária , Humanos , Adulto , Animais , Anopheles/genética , Mosquitos Vetores/genética , Genética Populacional , Estações do Ano
3.
Parasit Vectors ; 17(1): 149, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515191

RESUMO

BACKGROUND: Anopheles gambiae continues to be widespread and an important malaria vector species complex in Uganda. New approaches to malaria vector control are being explored including population suppression through swarm reductions and genetic modification involving gene drives. Designing and evaluating these new interventions require good understanding of the biology of the target vectors. Anopheles mosquito swarms have historically been hard to locate in Uganda and therefore have remained poorly characterized. In this study we sought to identify and characterize An. gambiae s.l mosquito swarms in three study sites of high An. gambiae s.l prevalence within Central Uganda. METHODS: Nine sampling visits were made to three villages over a 2-year period. Sampling targeted both wet and dry seasons and was done for 2 days per village during each trip, using sweep nets. All swarm data were analysed using the JMP 14 software (SAS Institute, Inc., Cary, NC, USA), parametrically or non-parametrically as appropriate. RESULTS: Most of the An. gambiae s.s. swarms sampled during this study were single-species swarms. However, some mixed An. gambiae s.s. and Culex spp. mosquito swarms were also observed. Swarms were larger in the wet season than in the dry season. Mean swarm height ranged from 2.16 m to 3.13 m off the ground and only varied between villages but not by season. Anopheles gambiae mosquitoes were present in all three villages, preferred to swarm over bare ground markers, and could be effectively sampled by field samplers. CONCLUSIONS: This study demonstrated that An. gambiae s.l swarms could be effectively located and sampled in South Central Uganda and provided in-depth descriptions of hitherto poorly understood aspects of An. gambiae local swarm characteristics. Swarms were found close to inhabited households and were greater in size and number during the rainy season. Anopheles gambiae s.s swarms were significantly associated with bare ground markers and were sometimes at heights over 4 m above the ground, showing a necessity to develop tools suitable for swarm sampling at these heights. While mixed species swarms have been reported before elsewhere, this is the first documented instance of mixed genus swarms found in Uganda and should be studied further as it could have implications for swarm sampling explorations where multiple species of mosquitoes exist.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Mosquitos Vetores , Uganda , Estações do Ano
4.
Malar J ; 22(1): 336, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936194

RESUMO

The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival  via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Mosquitos Vetores/genética , Malária/prevenção & controle , África Subsaariana , Estações do Ano
5.
Med Vet Entomol ; 36(2): 212-222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388913

RESUMO

Malaria is among the leading causes of death in Uganda, and Anopheles gambiae sensu stricto (s.s.) is the predominant vector. Although current vector control interventions have greatly reduced the malaria burden, the disease persists. New interventions are needed in order to eradicate them. Evaluation of new tools will require the availability of well-characterized test vector populations. Juvenile An. gambiae s.s. from Kibbuye and Kayonjo-derived populations were characterized under semi-field and laboratory conditions, given that various vector traits, including abundance and fitness are dependent on development profiles at this life stage. Ten replicates comprising 30 first instar larvae each were profiled for various life-history attributes (egg hatching, larval development time, larval survivorship, pupal weight and pupation rate). All parameters were similar for the two sites under laboratory conditions. However, the similarities or differences between field and laboratory development were parameter-specific. Whereas, larval survivorship and pupal weight were similar across seasons and laboratory in colonies from both sites, in the semi-field settings, pupation rate and larval survivorship differed between seasons in both sites. In addition, the average larval development time during the wet season was longer than that of the laboratory for both sites. Availability of mirror field sites is important for future tool evaluations.


Assuntos
Anopheles , Malária , Animais , Larva , Malária/prevenção & controle , Malária/veterinária , Mosquitos Vetores , Pupa , Uganda
6.
Parasit Vectors ; 14(1): 420, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419140

RESUMO

BACKGROUND: Malaria is often persistent in communities surrounded by mosquito breeding habitats. Anopheles gambiae sensu lato exploit a variety of aquatic habitats, but the biotic determinants of its preferences are poorly understood. This study aimed to identify and quantify macroinvertebrates in different habitat types with determined water physico-chemical parameters to establish those preferred by An. gambiae s.l. larvae as well as their predators and competitors. METHODS: A field survey was conducted in Kibuye and Kayonjo villages located in the vicinity of the River Sezibwa, north-eastern Uganda to identify Anopheline larval habitats shared by aquatic insects. Habitats were geo-recorded and as streams, ponds, temporary pools and roadside ditches. From October to December 2017, random microhabitats/quadrats were selected from each habitat type, their water physico-chemical parameters (electrical conductivity, total dissolved solids, temperature and pH) were measured, and they were sampled for macroinvertebrates using standard dippers. All collected arthropod macroinvertebrates were then morphologically identified to family level and enumerated. RESULTS: Principal component analysis showed that the four larval habitat types were characterized by distinct physico-chemical parameter profiles. Ponds and streams had the highest number and diversity of macroinvertebrate insect taxa and sustained few An. gambiae s.l. larvae. Anopheles gambiae s.l. were more common in roadside ditches and particularly abundant in temporary pools which it commonly shared with Dytiscidae (predaceous diving beetles) and Culex spp. Cluster correlation analysis conducted on the abundance of these taxa within quadrats suggested that An. gambiae s.l. and Dytiscidae have the most similar patterns of microhabitat use, followed by Cybaeidae (water spiders). Whilst Culex spp. co-occurred with An. gambiae s.l. in some habitats, there was only partial niche overlap and no clear evidence of competition between the two mosquito taxa. CONCLUSIONS: Ponds and streams are habitats that host the largest diversity and abundance of aquatic insect taxa. Anopheles gambiae s.l. larvae distinctively preferred temporary pools and roadside ditches, where they were exposed to few predators and no apparent competition by Culex spp. Further studies should aim to test the impact of Dytiscidae and Cybaeidae on An. gambiae s.l. dynamics experimentally.


Assuntos
Anopheles/fisiologia , Ecossistema , Larva/fisiologia , Mosquitos Vetores/fisiologia , Comportamento Predatório , Animais , Culex/fisiologia , Malária/transmissão , Rios , Temperatura , Uganda
7.
Parasit Vectors ; 14(1): 281, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039430

RESUMO

BACKGROUND: Traditional malaria vector sampling techniques bias collections towards female mosquitoes. Comprehensive understanding of vector dynamics requires balanced vector sampling of both males and females. Male mosquito sampling is also necessary for population size estimations by male-based mark-release-recapture (MRR) studies and for developing innovations in mosquito control, such as the male-targeted sterile insect technique and other genetic modification approaches. This study evaluated a range of collection methods which show promise in providing a more equal, or even male-biased, sex representation in the sample. RESULTS: Swarms were found at all study sites and were more abundant and larger at the peak of the wet season. Swarm sampling caught the most males, but when man/hour effort was factored in, sampling of eaves by aspiration was the more efficient method and also provided a representative sample of females. Grass-roofed houses were the most productive for eave collections. Overall few mosquitoes were caught with artificial resting traps (clay pots and buckets), although these sampling methods performed better at the start of the wet season than at its peak, possibly because of changes in mosquito ecology and an increased availability of natural resting sites later in the season. Aspiration of bushes was more productive at the peak of the wet season than at the start. CONCLUSIONS: The results of this study demonstrate that eave aspiration was an efficient and useful male mosquito collection method at the study sites and a potentially powerful aid for swarm location and MRR studies. The methods evaluated may together deliver more sex-balanced mosquito captures and can be used in various combinations depending on the aims and ecological parameters of a given study.


Assuntos
Anopheles , Ecologia , Mosquitos Vetores , Distribuição Animal , Animais , Feminino , Habitação , Humanos , Malária/transmissão , Masculino , Controle de Mosquitos/métodos , Densidade Demográfica , Estações do Ano , Especificidade da Espécie , Uganda
8.
Malar J ; 20(1): 53, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478519

RESUMO

Stakeholder engagement is an essential pillar for the development of innovative public health interventions, including genetic approaches for malaria vector control. Scientific terminologies are mainly lacking in local languages, yet when research activities involve international partnership, the question of technical jargon and its translation is crucial for effective and meaningful communication with stakeholders. Target Malaria, a not-for-profit research consortium developing innovative genetic approaches to malaria vector control, carried out a linguistic exercise in Mali, Burkina Faso and Uganda to establish the appropriate translation of its key terminology to local languages of sites where the teams operate. While reviewing the literature, there was no commonly agreed approach to establish such glossary of technical terms in local languages of the field sites where Target Malaria operates. Because of its commitment to the value of co-development, Target Malaria decided to apply this principle for the linguistic work and to take the opportunity of this process to empower communities to take part in the dialogue on innovative vector control. The project worked with linguists from other institutions (whether public research ones or private language centre) who developed a first potential glossary in the local language after better understanding the project scientific approach. This initial glossary was then tested during focus groups with community members, which significantly improved the proposed translations by making them more appropriate to the local context and cultural understanding. The stepwise process revealed the complexity and importance of elaborating a common language with communities as well as the imbrication of language with cultural aspects. This exercise demonstrated the strength of a co-development approach with communities and language experts as a way to develop knowledge together and to tailor communication to the audience even in the language used.


Assuntos
Anopheles/genética , Dicionários como Assunto , Técnicas Genéticas , Malária/prevenção & controle , Mosquitos Vetores/genética , Saúde Pública/métodos , Participação dos Interessados , Animais , Burkina Faso , Feminino , Humanos , Linguística , Malária/parasitologia , Masculino , Mali , Controle de Mosquitos , Mosquitos Vetores/parasitologia , Uganda
9.
Evol Appl ; 13(2): 417-431, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993086

RESUMO

Documenting isolation is notoriously difficult for species with vast polymorphic populations. High proportions of shared variation impede estimation of connectivity, even despite leveraging information from many genetic markers. We overcome these impediments by combining classical analysis of neutral variation with assays of the structure of selected variation, demonstrated using populations of the principal African malaria vector Anopheles gambiae. Accurate estimation of mosquito migration is crucial for efforts to combat malaria. Modeling and cage experiments suggest that mosquito gene drive systems will enable malaria eradication, but establishing safety and efficacy requires identification of isolated populations in which to conduct field testing. We assess Lake Victoria islands as candidate sites, finding one island 30 km offshore is as differentiated from mainland samples as populations from across the continent. Collectively, our results suggest sufficient contemporary isolation of these islands to warrant consideration as field-testing locations and illustrate shared adaptive variation as a useful proxy for connectivity in highly polymorphic species.

10.
BMC Bioinformatics ; 20(1): 741, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888443

RESUMO

BACKGROUND: Currently, formal mechanisms for bioinformatics support are limited. The H3Africa Bioinformatics Network has implemented a public and freely available Helpdesk (HD), which provides generic bioinformatics support to researchers through an online ticketing platform. The following article reports on the H3ABioNet HD (H3A-HD)'s development, outlining its design, management, usage and evaluation framework, as well as the lessons learned through implementation. RESULTS: The H3A-HD evaluated using automatically generated usage logs, user feedback and qualitative ticket evaluation. Evaluation revealed that communication methods, ticketing strategies and the technical platforms used are some of the primary factors which may influence the effectivity of HD. CONCLUSION: To continuously improve the H3A-HD services, the resource should be regularly monitored and evaluated. The H3A-HD design, implementation and evaluation framework could be easily adapted for use by interested stakeholders within the Bioinformatics community and beyond.


Assuntos
Biologia Computacional/métodos , Interface Usuário-Computador , África , Genômica , Pesquisa
11.
Malar J ; 17(1): 285, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081911

RESUMO

BACKGROUND: Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS: 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS: 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS: A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.


Assuntos
Anopheles/genética , Genoma de Inseto , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Marcadores Genéticos , Densidade Demográfica , Análise de Sequência de DNA , Uganda
12.
Parasit Vectors ; 11(1): 246, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661226

RESUMO

BACKGROUND: Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. RESULTS: Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. CONCLUSIONS: The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies.


Assuntos
Anopheles/classificação , Anopheles/genética , Variação Genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Genótipo , Lagos , Repetições de Microssatélites , Análise de Sequência de DNA , Análise Espaço-Temporal , Uganda
13.
Glob Heart ; 12(2): 91-98, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28302555

RESUMO

BACKGROUND: Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. OBJECTIVES: H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. METHODS AND RESULTS: Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for downstream interpretation of prioritized variants. To provide support for these and other bioinformatics queries, an online bioinformatics helpdesk backed by broad consortium expertise has been established. Further support is provided by means of various modes of bioinformatics training. CONCLUSIONS: For the past 4 years, the development of infrastructure support and human capacity through H3ABioNet, have significantly contributed to the establishment of African scientific networks, data analysis facilities, and training programs. Here, we describe the infrastructure and how it has affected genomics and bioinformatics research in Africa.


Assuntos
Pesquisa Biomédica/métodos , Biologia Computacional/tendências , Genômica/métodos , África , Humanos
14.
AIDS Res Hum Retroviruses ; 31(7): 749-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953118

RESUMO

Structured treatment interruption (STI) has been trialed as an alternative to lifelong antiretroviral therapy (ART). We retrospectively performed single genome sequencing of the HIV-1 pol region from three patients representing different scenarios. They were either failing on continuous therapy (CT-F), failing STI (STI-F), or suppressing on STI (STI-S). Over 460 genomes were generated from three to five different time points over a 2-year period. We found multiple-linked-resistant mutations in both treatment failures. However, the CT-F patient showed a stepwise accumulation of diverse, linked mutations whereas the STI-F patient had lineage turnover between treatment periods with recirculation of wild-type and resistant variants from reservoirs. The STI-F patient showed a 7-fold increase in the third codon position substitution rate relative to the first and second positions compared to a 2-fold increase for CT-F and increased purifying selection in the pol gene (62 vs. 22 sites, respectively). An understanding of intrapatient viral dynamics could guide the future direction of treatment interruption strategies.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Variação Genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/classificação , Inibidores da Transcriptase Reversa/uso terapêutico , Adaptação Biológica , Análise por Conglomerados , Evolução Molecular , Genoma Viral , Genótipo , HIV-1/genética , Humanos , Dados de Sequência Molecular , Filogenia , Estudos Retrospectivos , Análise de Sequência de DNA , Homologia de Sequência , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
15.
J Med Virol ; 86(12): 2107-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24700073

RESUMO

Molecular data on rubella viruses are limited in Uganda despite the importance of congenital rubella syndrome (CRS). Routine rubella vaccination, while not administered currently in Uganda, is expected to begin by 2015. The World Health Organization recommends that countries without rubella vaccination programs assess the burden of rubella and CRS before starting a routine vaccination program. Uganda is already involved in integrated case-based surveillance, including laboratory testing to confirm measles and rubella, but molecular epidemiologic aspects of rubella circulation have so far not been documented in Uganda. Twenty throat swab or oral fluid samples collected from 12 districts during routine rash and fever surveillance between 2003 and 2012 were identified as rubella virus RNA positive and PCR products encompassing the region used for genotyping were sequenced. Phylogenetic analysis of the 20 sequences identified 19 genotype 1G viruses and 1 genotype 1E virus. Genotype-specific trees showed that the Uganda viruses belonged to specific clusters for both genotypes 1G and 1E and grouped with similar sequences from neighboring countries. Genotype 1G was predominant in Uganda. More epidemiological and molecular epidemiological data are required to determine if genotype 1E is also endemic in Uganda. The information obtained in this study will assist the immunization program in monitoring changes in circulating genotypes.


Assuntos
Variação Genética , Vírus da Rubéola/classificação , Vírus da Rubéola/genética , Rubéola (Sarampo Alemão)/virologia , Adolescente , Adulto , Criança , Análise por Conglomerados , Feminino , Genótipo , Humanos , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Mucosa Bucal/virologia , Faringe/virologia , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/genética , Rubéola (Sarampo Alemão)/epidemiologia , Vírus da Rubéola/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Uganda/epidemiologia , Adulto Jovem
16.
Am J Trop Med Hyg ; 76(2): 334-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17297045

RESUMO

The African malaria vector Anopheles gambiae is polymorphic for alternative arrangements on the left arm of chromosome 2 (2La and 2L+(a)) that are non-randomly distributed with respect to degree of aridity. Detailed studies on the ecological role of inversion 2La have been hindered by the technical demands of traditional karyotype analysis and by sex- and stage-specific limitations on the availability of polytene chromosomes favorable for analysis. Recent molecular characterization of both inversion breakpoints presented the opportunity to develop a polymerase chain reaction (PCR)-based method for karyotype analysis. Here we report the development of this molecular diagnostic assay and the results of extensive field validation. When tested on 765 An. gambiae specimens sampled across Africa, the molecular approach compared favorably with traditional cytologic methods, correctly scoring > 94% of these specimens. By providing ready access to the 2La karyotype, this tool lays groundwork for future studies of the ecological genomics of this medically important species.


Assuntos
Anopheles/genética , Inversão Cromossômica/genética , Insetos Vetores/genética , África , Animais , DNA/química , DNA/genética , Ecossistema , Cariotipagem , Reação em Cadeia da Polimerase , Polimorfismo Genético
17.
Malar J ; 4: 59, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16336684

RESUMO

BACKGROUND: Alternative means of malaria control are urgently needed. Evaluating the effectiveness of measures that involve genetic manipulation of vector populations will be facilitated by identifying small, genetically isolated vector populations. The study was designed to use variation in microsatellite markers to look at genetic structure across four Lake Victoria islands and two surrounding mainland populations and for evidence of any restriction to free gene flow. METHODS: Four Islands (from 20-50 km apart) and two surrounding mainland populations (96 km apart) were studied. Samples of indoor resting adult mosquitoes, collected over two consecutive years, were genotyped at microsatellite loci distributed broadly throughout the genome and analysed for genetic structure, effective migration (Nem) and effective population size (Ne). RESULTS: Ne estimates showed island populations to consist of smaller demes compared to the mainland ones. Most populations were significantly differentiated geographically, and from one year to the other. Average geographic pair-wise FST ranged from 0.014-0.105 and several pairs of populations had Ne m < 3. The loci showed broad heterogeneity at capturing or estimating population differences. CONCLUSION: These island populations are significantly genetically differentiated. Differences reoccurred over the study period, between the two mainland populations and between each other. This appears to be the product of their separation by water, dynamics of small populations and local adaptation. With further characterisation these islands could become possible sites for applying measures evaluating effectiveness of control by genetic manipulation.


Assuntos
Anopheles/genética , Variação Genética , Insetos Vetores/genética , Animais , Anopheles/classificação , Inversão Cromossômica , Fluxo Gênico/genética , Genótipo , Geografia , Insetos Vetores/classificação , Modelos Lineares , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Densidade Demográfica , Fatores de Tempo , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA