Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Clin Invest ; 126(5): 1857-70, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064285

RESUMO

Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive ß cell dysfunction. Excess glucose and lipid impair ß cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human ß cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human ß cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and ß cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Fator de Transcrição MafB/biossíntese , Animais , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/transplante , Fator de Transcrição MafB/genética , Camundongos , Camundongos Knockout
2.
Am J Physiol Endocrinol Metab ; 308(7): E592-602, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25648831

RESUMO

Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pesquisa , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Doadores de Tecidos/estatística & dados numéricos , Doadores de Tecidos/provisão & distribuição , Obtenção de Tecidos e Órgãos/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA