RESUMO
PURPOSE: The study of mechanisms of plant responses to extreme conditions, particularly, microgravity and ionizing radiation, is crucial for space exploration. Modern space biology of plants focuses on increasing plant tolerance to harsh conditions of space environment. Given the limited access to the International Space Station, we designed and assembled the 3D clinostat for mimicking microgravity, which, in combination with proton irradiation, allows simulating space conditions. As a case study for testing the device, we studied the effect of clinostating on Arabidopsis thaliana accession originating from the Chernobyl exclusion zone. MATERIALS AND METHODS: Using the combined clinostating and proton irradiation, we simulated the conditions of long-term space flight for Arabidopsis thaliana plants of the Chernobyl accession - progeny of chronically irradiated plants, grown from field-collected (Masa-0) and laboratory-cultivated (Masa-0-1) seeds, and for wild-type Col-8. The clinostating and irradiation of plants were also carried out separately. Plant responses were studied as photosynthetic and phenotypic endpoints of seedlings. RESULTS AND CONCLUSIONS: Parameters of chlorophyll fluorescence estimated immediately after exposure showed that Masa-0-1 plants were resistant to the simulated space conditions, while Masa-0 demonstrated modulation of non-photochemical fluorescence quenching. Proton irradiation generally inhibited photosynthesis of Masa-0, Masa-0-1, and Col-8 seedlings. The combined effect of irradiation and clinostating modulated the photosynthetic activity of Col-8 seedlings. The leaf area of seedlings did not change after exposure to simulated conditions. The 3D clinostat model and software are published along with this article for researchers interested in the field of space biology.
RESUMO
The development of adaptation strategies for crops under ever-changing climate conditions is a critically important food security issue. Studies of barley responses to ionising radiation showed that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways involved in adaptation to a range of abiotic stressors. In order to identify potential molecular contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes with increased expression and 124 with decreased expression were detected. Among all types of radiation, the highest number of differentially expressed genes was observed in electron-irradiated samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool for stress tolerance programmes.