Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Rep ; 30: 101227, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35198740

RESUMO

Genetic mutations in HSF4 cause congenital cataracts. HSF4 exhibits both positive and negative regulation on the transcription of heat shock and non-heat shock proteins during lens development, and its activity is regulated by posttranslational modifications. Biotin is an essential vitamin that regulates gene expression through protein biotinylation. In this paper, we report that HSF4b is negatively regulated by biotinylation. Administration of biotin or ectopic bacterial biotin ligase BirA increases HSF4b biotinylation at its C-terminal amino acids from 196 to 493. This attenuates the HSF4b-controlled expression of αB-crystallin in both lens epithelial cells and tested HEK293T cells. HSF4b interacts with holocarboxylase synthetase (HCS), a ubiquitous enzyme for catalyzing protein biotinylation in mammal. Ectopic HA-HCS expression downregulates HSF4b-controlled αB-crystallin expression. Lysine-mutation analyses indicate that HSF4b/K444 is a potential biotinylation site. Mutation K444R reduces the co-precipitation of HSF4b by streptavidin beads and biotin-induced reduction of αB-crystallin expression. Mutations of other lysine residues such as K207R/K209R, K225R, K288R, K294R and K355R in HSF4's C-terminal region do not affect HSF4's expression level and the interaction with streptavidin, but they exhibit distinct regulation on αB-crystallin expression through different mechanisms. HSF4/K294R leads to upregulation of αB-crystallin expression, while mutations K207R/K209R, K225R, K288R, K255R and K435R attenuate HSF4's regulation on αB-crystallin expression. K207R/K209R blocks HSF4 nuclear translocation, and K345R causes HSF4 destabilization. Taken together, the data reveal that biotin maybe a novel factor in modulating HSF4 activity through biotinylation.

2.
BMC Genomics ; 23(1): 41, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012443

RESUMO

BACKGROUND: The early death and health problems of calves caused substantial economic losses in the dairy industry. As the immune system of neonates has not been fully developed, the absorption of maternal immunoglobulin (Ig) from colostrum is essential in protecting newborn calves against common disease organisms in their early life. The overwhelming majority of Ig in bovine whey is transported from the serum. Therefore, Ig concentration in the colostrum and serum of dairy cows are critical traits when estimating the potential disease resistance of its offspring. RESULTS: Colostrum, blood, and hair follicle samples were collected from 588 Chinese Holstein cows within 24 h after calving. The concentration of total IgG, IgG1, IgG2, IgA and IgM in both colostrum and serum were detected via ELISA methods. With GCTA software, genome-wide association studies (GWASs) were performed with 91,620 SNPs genotyped by GeneSeek 150 K (140,668 SNPs) chips. As a result, 1, 5, 1 and 29 significant SNPs were detected associated with the concentrations of colostrum IgG1, IgG2, IgA IgM, and serum IgG2 at the genome-wide level (P < 3.08E-6); 11, 2, 13, 2, 12, 8, 2, 27, 1 and 4 SNPs were found significantly associated with total IgG, IgG1, IgG2, IgA and IgM in colostrum and serum at the suggestive level (P < 6.15E-5). Such SNPs located in or proximate to (±1 Mb) 423 genes, which were functionally implicated in biological processes and pathways, such as immune response, B cell activation, inflammatory response and NF-kappaB signaling pathways. By combining the biological functions and the known QTL data for immune traits in bovine, 14 promising candidate functional genes were identified for immunoglobulin concentrations in colostrum and serum in dairy cattle, they were FGFR4, FGFR2, NCF1, IKBKG, SORBS3, IGHV1S18, KIT, PTGS2, BAX, GRB2, TAOK1, ICAM1, TGFB1 and RAC3. CONCLUSIONS: In this study, we identified 14 candidate genes related to concentrations of immunoglobulins in colostrum and serum in dairy cattle by performing GWASs. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting immunoglobulin concentrations in colostrum and important information for genetic improvement of such traits in dairy cattle.


Assuntos
Colostro , Estudos de Associação Genética/veterinária , Animais , Animais Recém-Nascidos , Bovinos , China , Indústria de Laticínios , Feminino , Imunoglobulina G , Gravidez
3.
Immunology ; 163(4): 448-459, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33738807

RESUMO

In contrast to humans or rabbits, in which maternal IgG is transmitted to offspring prenatally via the placenta or the yolk sac, large domestic animals such as pigs, cows and sheep transmit IgG exclusively through colostrum feeding after delivery. The extremely high IgG content in colostrum is absorbed by newborns via the small intestine. Although it is widely accepted that the neonatal Fc receptor, FcRn, is the receptor mediating IgG transfer across both the placenta and small intestine, it remains unclear whether FcRn also mediates serum IgG transfer across the mammary barrier to colostrum/milk, especially in large domestic animals. In this study, using a FcRn knockout pig model generated with a CRISPR-Cas9-based approach, we clearly demonstrate that FcRn is not responsible for the IgG transfer from serum to colostrum in pigs, although like in other mammals, it is involved in IgG homeostasis and mediates IgG absorption in the small intestine of newborns.


Assuntos
Colostro/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Intestino Delgado/metabolismo , Placenta/metabolismo , Receptores Fc/metabolismo , Suínos/imunologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Aleitamento Materno , Sistemas CRISPR-Cas , Bovinos , Feminino , Técnicas de Inativação de Genes , Antígenos de Histocompatibilidade Classe I/genética , Homeostase , Humanos , Imunidade Materno-Adquirida , Imunoglobulina G/metabolismo , Gravidez , Coelhos , Receptores Fc/genética , Ovinos
4.
J Immunol ; 205(3): 637-647, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591403

RESUMO

Atypical TCRδ found in sharks, amphibians, birds, and monotremes and TCRµ found in monotremes and marsupials are TCR chains that use Ig or BCR-like variable domains (VHδ/Vµ) rather than conventional TCR V domains. These unconventional TCR are consistent with a scenario in which TCR and BCR, although having diverged from each other more than 400 million years ago, continue to exchange variable gene segments in generating diversity for Ag recognition. However, the process underlying this exchange and leading to the evolution of these atypical TCR receptor genes remains elusive. In this study, we identified two TCRα/δ gene loci in the Chinese alligator (Alligator sinensis). In total, there were 144 V, 154 Jα, nine Jδ, eight Dδ, two Cα, and five Cδ gene segments in the TCRα/δ loci of the Chinese alligator, representing the most complicated TCRα/δ gene system in both genomic structure and gene content in any tetrapod examined so far. A pool of 32 VHδ genes divided into 18 subfamilies was found to be scattered over the two loci. Phylogenetic analyses revealed that these VHδ genes could be related to bird VHδ genes, VHδ/Vµ genes in platypus or opossum, or alligator VH genes. Based on these findings, a model explaining the evolutionary pattern of atypical TCRδ/TCRµ genes in tetrapods is proposed. This study sheds new light on the evolution of TCR and BCR genes, two of the most essential components of adaptive immunity.


Assuntos
Jacarés e Crocodilos , Evolução Molecular , Loci Gênicos , Receptores de Antígenos de Linfócitos T alfa-beta , Proteínas de Répteis , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/imunologia , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Proteínas de Répteis/genética , Proteínas de Répteis/imunologia
5.
Vet Immunol Immunopathol ; 215: 109913, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31420069

RESUMO

The development of a rapid and efficient system to generate porcine monoclonal antibodies (mAbs) is an important step toward the discovery of critical neutralizing targets for designing rational vaccines against porcine viruses. In this study, we established a platform for producing porcine mAbs based on single cell technologies. First, we singled out an optimal donor from 507 pigs based on serum antibody neutralizing activity against porcine reproductive and respiratory syndrome virus (PRRSV). After identifying the contribution of IgG to the neutralizing activity, single CD45R+IgG+Ag+ B cells were sorted from peripheral blood mononuclear cells (PBMCs). Single B cell RT-PCR was performed using primers designed to cover the germline repertoire of the porcine VH/VL gene segments. Paired VH/VLs were cloned into a eukaryotic expression vector and transfected into 293T cells. We demonstrate that full-length porcine mAbs were produced, and antigen-specific mAbs were obtained after further validation. The approach reported in this study can be applied to generate porcine mAbs against any given antigen and may help with the screening of neutralizing antibodies against porcine pathogens.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Especificidade de Anticorpos , Linfócitos B/imunologia , Células HEK293 , Humanos , Região Variável de Imunoglobulina/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transfecção , Recombinação V(D)J
6.
Dev Comp Immunol ; 85: 31-43, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574022

RESUMO

All jawed vertebrates have four T cell receptor (TCR) chains that are expressed by thymus-derived lymphocytes and play a major role in animal immune defence. However, few studies have investigated the TCR chains of crocodilians compared with those of birds and mammals, despite their key evolutionary position linking amphibians, reptiles, birds and mammals. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization, evolution and expression of TRB and TRG loci in Alligator sinensis. According to the sequencing data, the Alligator sinensis TRB locus spans approximately 500 Kb of genomic DNA containing two D-J-C clusters and 43 V gene segments and is organized as Vß(39)-pJß1-pCß1-pDß1-Dß2- Jß2(12)-Cß2-Vß(4), whereas the TRG locus spans 115 Kb of DNA genomic sequence consisting of 18 V gene segments, nine J gene segments and one C gene segment and is organized in a classical translocon pattern as Vγ(18)-Jγ(9)-Cγ. Moreover, syntenic analysis of TRB and TRG chain loci suggested a high degree of conserved synteny in the genomic regions across mammals, birds and Alligator sinensis. By analysing the cloned TRB/TRG cDNA, we identified the usage pattern of V families in the expressed TRB and TRG. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed TRB and TRG sequences. Phylogenetic analysis revealed that TRB and TRG loci possess distinct evolutionary patterns. Most Alligator sinensis V subgroups have closely related orthologues in chicken and duck, and a small number of Alligator sinensis V subgroups have orthologues in mammals, which supports the hypothesis that crocodiles are the closest relatives of birds and mammals. Collectively, these data provide insights into TCR gene evolution in vertebrates and improve our understanding of the Alligator sinensis immune system.


Assuntos
Jacarés e Crocodilos/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Animais , Aves/genética , Cromossomos Artificiais Bacterianos/genética , DNA Complementar , Evolução Molecular , Genoma/genética , Genômica/métodos , Mamíferos/genética , Filogenia , Sintenia/genética
7.
J Immunol ; 200(4): 1413-1424, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298832

RESUMO

The neonatal Fc receptor (FcRn) is involved in IgG metabolism and transport in placental mammals. However, whether FcRn is responsible for IgG transfer from maternal serum to colostrum/milk is controversial. Interestingly, large domestic animals, such as cows, pigs, sheep, and horses, in which passive IgG transfer is exclusively completed via colostrum/milk, all express an FcRn α-chain that is shorter in the cytoplasmic tail (CYT) than its counterparts in humans and rodents. To address whether the length variation has any functional significance, we performed in vitro experiments using the Transwell system with the MDCK cell line stably transfected with various FcRn constructs; these clearly suggested that truncation of the CYT tail caused a polar change in IgG transfer. However, we observed no evidence supporting functional changes in IgG in vivo using mice in which the FcRn CYT was precisely truncated. These data suggest that the length variation in FcRn is not functionally associated with passive IgG transfer routes in mammals.


Assuntos
Transporte Biológico/fisiologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunidade Materno-Adquirida/fisiologia , Imunoglobulina G/metabolismo , Receptores Fc/química , Receptores Fc/metabolismo , Animais , Cães , Feminino , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA