RESUMO
Few drugs alleviate non-small cell lung cancer (NSCLC) metastasis effectively. Small molecular screening demonstrated that fangchinoline (Fan) reversed epithelial-mesenchymal transition (EMT) in NSCLC cells, inhibiting cell invasion and migration. RNA sequencing (RNA-seq) of Fan-treated NSCLC cells revealed that Fan potently quenched the NADP+ metabolic process. Molecular docking analysis revealed that Fan directly and specifically targeted NOX4. NOX4 was associated with poor prognosis in NSCLC in both The Cancer Genome Atlas (TCGA) and Hong Kong cohorts. In mitochondrial DNA-depleted ρ0 NSCLC cells, Fan decreased cytosolic reactive oxygen species (ROS) to inhibit the Akt-mTOR signaling pathway by directly promoting NOX4 degradation. In TCGA and Hong Kong cohorts, NOX4 upregulation acted as a driver event as it positively correlated with metastasis and oxidative stress. Single-cell RNA-seq indicated that NOX4 was overexpressed, especially in cancer cells, cancer stem cells, and endothelial cells. In mice, Fan significantly impeded subcutaneous xenograft formation and reduced metastatic nodule numbers in mouse lung and liver. Drug sensitivity testing demonstrated that Fan suppressed patient-derived organoid growth dose-dependently. Fan is a potent small molecule for alleviating NSCLC metastasis by directly targeting NOX4 and is a potential novel therapeutic agent.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Benzilisoquinolinas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.
Assuntos
Surdez , Perda Auditiva , Animais , Cóclea/metabolismo , Surdez/metabolismo , Surdez/terapia , Terapia Genética , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/terapia , CamundongosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Gene therapy for auditory diseases is gradually maturing. Recent progress in gene therapy treatments for genetic and acquired hearing loss has demonstrated the feasibility in animal models. However, a number of hurdles, such as lack of safe viral vector with high efficiency and specificity, robust deafness large animal models, translating animal studies to clinic etc., still remain to be solved. It is necessary to overcome these challenges in order to effectively recover auditory function in human patients. Here, we review the progress made in our group, especially our efforts to make more effective and cell type-specific viral vectors for targeting cochlea cells.
Assuntos
Dependovirus , Terapia Genética , Perda Auditiva , Animais , Cóclea , Dependovirus/genética , Vetores Genéticos/genética , Perda Auditiva/genética , Perda Auditiva/terapia , HumanosRESUMO
INTRODUCTION: Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. Up to now, many genes associated with HCC have not yet been identified. In this study, we screened the HCC-related genes through the integrated analysis of the TCGA database, of which the potential biomarkers were also further validated by clinical specimens. The discovery of potential biomarkers for HCC provides more opportunities for diagnostic indicators or gene-targeted therapies. METHODS: Cancer-related genes in The Cancer Genome Atlas (TCGA) HCC database were screened by a random forest (RF) classifier based on the RF algorithm. Proteins encoded by the candidate genes and other associated proteins obtained via protein-protein interaction (PPI) analysis were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The newly identified genes were further validated in the HCC cell lines and clinical tissue specimens by Western blotting, immunofluorescence, and immunohistochemistry (IHC). Survival analysis verified the clinical value of genes. RESULTS: Ten genes with the best feature importance in the RF classifier were screened as candidate genes. By comprehensive analysis of PPI, GO and KEGG, these genes were confirmed to be closely related to HCC tumors. Representative NOX4 and FLVCR1 were selected for further validation by biochemical analysis which showed upregulation in both cancer cell lines and clinical tumor tissues. High expression of NOX4 or FLVCR1 in cancer cells predicts low survival. CONCLUSION: Herein, we report that NOX4 and FLVCR1 are promising biomarkers for HCC that may be used as diagnostic indicators or therapeutic targets.
RESUMO
Dioscin is a natural steroidal saponin that can be isolated from Chinese medicine, such as Dioscoreae rhizoma. It has wild range of pharmacological activities such as hepatoprotection, a lipid-lowering effect, and anti-inflammation. Recently, mounting studies reported the anticancer effect of dioscin on a variety of tumor cells. However, the potential effect of dioscin on the epithelial-mesenchymal transition (EMT) of HepG2 cells is unclear. In the present study, dioscin was identified to inhibit transforming growth factor-ß1 (TGF-ß1) and induced invasive and migratory behavior of HepG2 cells. Consistently, the expression of the epithelial marker E-cadherin and gap junction proteins increased following dioscin treatment, while mesenchymal markers decreased, including N-cadherin, Vimentin, Snail, and Slug. Furthermore, we discovered that TGF-ß1 induces phosphorylation of JNK, p38, and Erk, whereas the activation of these kinases was reversed by dioscin treatment in a dose-dependent manner. With the addition of Asiatic acid, a p38 activator, the inhibitory effect of dioscin on EMT was reversed. Taken together, these data indicated that dioscin inhibits EMT in HepG2 cells, which is mediated in large part by inhibition of the p38-MAPK signaling.
Assuntos
Proliferação de Células/efeitos dos fármacos , Diosgenina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Fator de Crescimento Transformador beta1/genética , Movimento Celular/efeitos dos fármacos , Diosgenina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
Cancer cells are characterized by malignant proliferation and aberrant metabolism and are thereby liable to the depletion of nutrients and accumulation of metabolic waste. To maintain cellular homeostasis, cancer cells are prone to upregulating the canonical autophagy pathway. Here, we identified paroxetine hydrochloride (Paxil) as a late autophagy inhibitor and investigated its killing effect on lung cancer cells and with a xenograft mouse model in vivo. Upregulated LC3-II and p62 expression indicated that Paxil inhibited autophagy. Acid-sensitive dyes (e.g., LysoTracker and AO staining) indicated reduced lysosomal acidity following Paxil treatment; consequently, the maturation of the pH-dependent hydroxylases (e.g., cathepsin B and D) substantially declined. Paxil also induced the fragmentation of mitochondria and further intensified ROS overproduction. Since the autophagy pathway was blocked, ROS rapidly accumulated, which activated JNK and p38 kinase. Such activity promoted the localization of Bax, which led to increased mitochondrial outer membrane permeability. The release of Cytochrome c with the loss of the membrane potential triggered a caspase cascade, ultimately leading to apoptosis. In contrast, the clearance of ROS by its scavenger, NAC, rescued Paxil-induced apoptosis accompanied by reduced p38 and JNK activation. Thus, Paxil blocked the autophagic flux and induced the mitochondria-dependent apoptosis via the ROS-MAPK pathway.