Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Sci Total Environ ; 912: 169002, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040347

RESUMO

Lake ice, as a crucial component of the cryosphere, serves as a sensitive indicator of climate change. Fine-scale monitoring of spatiotemporal patterns in lake ice phenology holds significant importance in scientific research and environmental management. However, the rapid and dynamic nature of the freeze-thaw process of lake ice poses challenges to existing methods, resulting in their limited application in small lakes. In this study, we propose a novel approach of investigating ice phenology of lakes in various sizes. We conducted a case study in Hoh Xil, known for its vulnerability to climate change and a wide distribution of small lakes, to analyze the ice phenology of 372 lakes (>1 km2) during 2017-2021. Firstly, ensemble machine-learning model was developed for lake ice identification from Landsat-8/9 and Sentinel-2 A/B imagery. The accuracy evaluation reveals the overall good performance for ice extraction results based on Landsat-8/9 (97.03 %) and Sentinel-2 A/B (96.89 %). Next, the XGBoost models were employed to reconstruct ice coverages on unobserved dates for the freezeup and breakup periods, respectively. Totally, 744 XGBoost models were constructed for the study lakes, and the majority of them perform well. Based on the reconstructed daily ice coverage, phenology parameters could be extracted for examining the spatiotemporal characteristics of ice cover and possible relationships with lake sizes and terrains. From early-October to early-November, the Hoh Xil lakes freeze from the northwest to the southeast, while the breakup period starts in late-March and lasts until late-June. Moreover, the results indicate relatively small variability in freezeup-end dates among lakes, but significant differences in breakup dates, showing a greater sensitivity to temperature variations. Furthermore, ice phenology in small lakes exhibit stronger consistency with subtle climatic fluctuations. The results highlight the significant role of ice phenology in small lakes, as they dominate the overall tendency of ice phenology in Hoh Xil.

4.
Nat Commun ; 14(1): 1587, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949069

RESUMO

Rivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.

5.
Sci Total Environ ; 802: 149928, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464806

RESUMO

Climate change in recent decades led to the remarkable expansions for most lakes in endorheic basins of the Tibetan Plateau (TP). Enlarged lake inundation areas may pose adverse effects and potential threats on the local human living environment, especially for high-risk villages adjacent to rapidly expanding lakes. Taking a rapidly expanding lake, Angzi Co in the central TP as a study case, we investigated the flooding risk of lake growth on the local living environment and proposed an optimized solution of village relocation selection on the basis of satellite and unmanned aerial vehicle (UAV) remote sensing. The detection of spatiotemporal variations of Angzi Co using optical and altimetric satellite observations revealed a significant area and water level increase by 81.28 km2 and 5.78 m, respectively, from 2000 to 2020. We also assessed the vertical accuracy of multi-source digital elevation model (DEM) products using Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) altimetry data and further examined the flooding risk and potential influences of lake expansion on adjacent settlements (Guozha Village). Results indicated that UAV-DEM achieves excellent advantages in depicting details of lake shoreline variations and simulating potential submergence regions, followed by Advanced Land Observing Satellite World 3D DEM (AW3D DEM). Moreover, assuming that Angzi Co maintains the water level at a growth rate of 0.29 m/a (the average change rate during 2000-2020), the village will be submerged in approximate 10 years based on our assessment. Furthermore, we designed an optimal relocation site southwest of Guozha Village and approximately 3 km away based on the GIS-MVDA method and field investigations. An initial remote sensing-based approach for assessing the flooding risk from dramatic lake expansions in the TP and optimizing the village relocation site was proposed in this study to provide an essential scientific reference for formulating risk mitigation solutions under future climate change scenarios.


Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Mudança Climática , Inundações , Humanos , Tibet
7.
Sensors (Basel) ; 19(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574940

RESUMO

Inland lakes are essential components of hydrological and biogeochemical water cycles, as well as indispensable water resources for human beings. To derive the long-term and continuous trajectory of lake inundation area changes is increasingly significant. Since it helps to understand how they function in the global water cycle and how they are impacted by climate change and human activities. Employing optical satellite images, as an important means of lake mapping, has been widely used in the monitoring of lakes. It is well known that one of the obvious difficulties of traditional remote sensing-based mapping methods lies in the tremendous labor and computing costs for delineating the large lakes (e.g., Caspian Sea). In this study, a novel approach of reconstructing long-term and high-frequency time series of inundation areas of large lakes is proposed. The general idea of this method is to obtain the lake inundation area at any specific observation date by referring to the mapping relationship of the water occurrence frequency (WOF) of the selected shoreline segment at relatively slight terrains and lake areas based on the pre-established lookup table. The lookup table to map the links of the WOF and lake areas is derived from the Joint Research Centre (JRC)Global Surface Water (GSW) dataset accessed in Google Earth Engine (GEE). We select five large lakes worldwide to reconstruct their long time series (1984-2018) of inundation areas using this method. The time series of lake volume variation are analyzed, and the qualitative investigations of these lake changes are eventually discussed by referring to previous studies. The results based on the case of North Aral Sea show that the mean relative error between estimated area and actually mapped value is about 0.85%. The mean R2 of all the five lakes is 0.746, which indicates that the proposed method can produce the robust estimates of area time series for these large lakes. This research sheds new light on mapping large lakes at considerably deducted time and labor costs, and be effectively applicable in other large lakes in regional and global scales.

8.
Sci Bull (Beijing) ; 63(11): 708-716, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36658820

RESUMO

China's government statement recently reported the plan of constructing Xiong'an New Area, which aims to phase out some extra capital functions from Beijing and to explore an innovative urban development mode with the priority in eco-environmental protection. The New Area is located in the semi-arid North China Plain (NCP) and is home to NCP's largest natural freshwater wetland, Baiyangdian Lake. A comprehensive realization of surface water dynamics would be crucial for policy-makers to outline a sustainable environment development strategy for New Area. In this study, we used a total of 245 time slices of cloud-free Landsat images to document the continuous changes of water bodies within Xiong'an City during 1984-2016 and to provide detailed evidence of water presence and persistency states and changes under the influences of climate change and human actions. Our results reveal that the New Area water body areas varied dramatically during the past 33 years, ranging from 0.44 km2 in April 1988 to 317.85 km2 in February 1989. The change of surface water area was not characterized by a monotonically decreasing tendency. The evolution processes can be divided into four sub-stages: the first extreme desiccation in mid-1980s, the wet stage with the most extensive inundation areas and strong inter-annual fluctuations from late-1988 to late 1999, another desiccation stage in early 2000s, and the overall recovering stage between 2007 and 2016. We also mapped the maximum water inundation extents and frequencies of all-season, pre-wet season (February-May) and post-wet season (September-December) for the 33 years and different sub-periods. Although there is good agreement between time series of surface water area evolution in the New Area and station-based precipitation and evaporation variations, multiple lines of evidences reviewed in previous research indicate that the degraded Baiyangdian Lake was also tightly associated with human activities from various aspects, including dam construction, groundwater extraction, agricultural irrigation, etc. We highlighted the current status of exploring the driving mechanism of surface water changes and existing problems, and then offer recommendations.

10.
Ying Yong Sheng Tai Xue Bao ; 22(8): 2091-7, 2011 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-22097372

RESUMO

By using the 2001-2008 MOMS land cover products (MCDl2Ql) and based on the modified classification scheme embodied the characteristics of land cover in northern Tibetan Plateau, the annual land cover type maps of the Plateau were drawn, with the dynamic changes of each land cover type analyzed by classification statistics, dynamic transfer matrix, and landscape pattern indices. In 2001-2008, due to the acceleration of global climate warming, the areas of glacier and snow-covered land in the Plateau decreased rapidly, and the melted snow water gathered into low-lying valley or basin, making the lake level raised and the lake area enlarged. Some permanent wetlands were formed because of partially submersed grassland. The vegetation cover did not show any evident meliorated or degraded trend. From 2001 to 2004, as the climate became warmer and wetter, the spatial distribution of desert began to shrink, and the proportions of sparse grassland and grassland increased. From 2006 to 2007, due to the warmer and drier climate, the desert bare land increased, and the sparse grassland decreased. From 2001 to 2008, both the landscape fragmentation degree and the land cover heterogeneity decreased, and the differences in the proportions of all land cover types somewhat enlarged.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Poaceae/crescimento & desenvolvimento , Altitude , Monitoramento Ambiental/métodos , Congelamento , Camada de Gelo , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA