Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(1): 134-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318491

RESUMO

The biosynthesis of bioactive secondary metabolites, specifically antibiotics, is of great scientific and economic importance. The control of antibiotic production typically involves different processes and molecular mechanism. Despite numerous efforts to improve antibiotic yields, joint engineering strategies for combining genetic manipulation with fermentation optimization remain finite. Lincomycin A (Lin-A), a lincosamide antibiotic, is industrially fermented by Streptomyces lincolnensis. Herein, the leucine-responsive regulatory protein (Lrp)-type regulator SLCG_4846 was confirmed to directly inhibit the lincomycin biosynthesis, whereas indirectly controlled the transcription of SLCG_2919, the first reported repressor in S. lincolnensis. Inactivation of SLCG_4846 in the high-yield S. lincolnensis LA219X (LA219XΔ4846) increases the Lin-A production and deletion of SLCG_2919 in LA219XΔ4846 exhibits superimposed yield increment. Given the effect of the double deletion on cellular primary metabolism of S. lincolnensis, Plackett-Burman design, steepest ascent and response surface methodologies were utilized and employed to optimize the seed medium of this double mutant in shake flask, and Lin-A yield using optimal seed medium was significantly increased over the control. Above strategies were performed in a 15-L fermenter. The maximal yield of Lin-A in LA219XΔ4846-2919 reached 6.56 g/L at 216 h, 55.1 % higher than that in LA219X at the parental cultivation (4.23 g/L). This study not only showcases the potential of this strategy to boost lincomycin production, but also could empower the development of high-performance actinomycetes for other antibiotics.

2.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341075

RESUMO

Lincomycin A (Lin-A) is a widely used antibacterial antibiotic fermented by Streptomyces lincolnensis However, the transcriptional regulatory mechanisms underlying lincomycin biosynthesis have seldom been investigated. Here, we first identified a TetR family transcriptional regulator (TFR), SLCG_2919, which negatively modulates lincomycin biosynthesis in S. lincolnensis LCGL. SLCG_2919 was found to specifically bind to promoter regions of the lincomycin biosynthetic gene cluster (lin cluster), including 25 structural genes, three resistance genes, and one regulatory gene, and to inhibit the transcription of these genes, demonstrating a directly regulatory role in lincomycin biosynthesis. Furthermore, we found that SLCG_2919 was not autoregulated, but directly repressed its adjacent gene, SLCG_2920, which encodes an ATP/GTP binding protein whose overexpression increased resistance against lincomycin and Lin-A yields in S. lincolnensis The precise SLCG_2919 binding site within the promoter region of SLCG_2920 was determined by a DNase I footprinting assay and by electrophoretic mobility shift assays (EMSAs) based on base substitution mutagenesis, with the internal 10-nucleotide (nt) AT-rich sequence (AAATTATTTA) shown to be essential for SLCG_2919 binding. Our findings indicate that SLCG_2919 is a negative regulator for controlling lincomycin biosynthesis in S. lincolnensis The present study improves our understanding of molecular regulation for lincomycin biosynthesis.IMPORTANCE TetR family transcriptional regulators (TFRs) are generally found to regulate diverse cellular processes in bacteria, especially antibiotic biosynthesis in Streptomyces species. However, knowledge of their function in lincomycin biosynthesis in S. lincolnensis remains unknown. The present study provides a new insight into the regulation of lincomycin biosynthesis through a TFR, SLCG_2919, that directly modulates lincomycin production and resistance. Intriguingly, SLCG_2919 and its adjoining gene, SLCG_2920, which encodes an ATP/GTP binding protein, were extensively distributed in diverse Streptomyces species. In addition, we revealed a new TFR binding motif, in which SLCG_2919 binds to the promoter region of SLCG_2920, dependent on the intervening AT-rich sequence rather than on the flanking inverted repeats found in the binding sites of other TFRs. These insights into transcriptional regulation of lincomycin biosynthesis by SLCG_2919 will be valuable in paving the way for genetic engineering of regulatory elements in Streptomyces species to improve antibiotic production.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Lincomicina/biossíntese , Streptomyces/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo
3.
J Ind Microbiol Biotechnol ; 45(6): 447-448, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29846840

RESUMO

In the online published article, row value "pIB139-metK1-metK2" in table 1 has been processed incorrectly. The correct table is given below.

4.
J Ind Microbiol Biotechnol ; 45(5): 345-355, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574602

RESUMO

Streptomyces lincolnensis is generally utilized for the production of lincomycin A (Lin-A), a clinically useful antibiotic to treat Gram-positive bacterial infections. Three methylation steps, catalyzed by three different S-adenosylmethionine (SAM)-dependent methyltransferases, are required in the biosynthesis of Lin-A, and thus highlight the significance of methyl group supply in lincomycin production. In this study, we demonstrate that externally supplemented SAM cannot be taken in by cells and therefore does not enhance Lin-A production. Furthermore, bioinformatics and in vitro enzymatic assays revealed there exist two SAM synthetase homologs, MetK1 (SLCG_1651) and MetK2 (SLCG_3830) in S. lincolnensis that could convert L-methionine into SAM in the presence of ATP. Even though we attempted to inactivate metK1 and metK2, only metK2 was deleted in S. lincolnensis LCGL, named as ΔmetK2. Following a reduction of the intracellular SAM concentration, ΔmetK2 mutant exhibited a significant decrease of Lin-A in comparison to its parental strain. Individual overexpression of metK1 or metK2 in S. lincolnensis LCGL either elevated the amount of intracellular SAM, concomitant with 15% and 22% increase in Lin-A production, respectively. qRT-PCR assays showed that overexpression of either metK1 or metK2 increased the transcription of lincomycin biosynthetic genes lmbA and lmbR, and regulatory gene lmbU, indicating SAM may also function as a transcriptional activator. When metK1 and metK2 were co-expressed, Lin-A production was increased by 27% in LCGL, while by 17% in a high-yield strain LA219X.


Assuntos
Antibacterianos/metabolismo , Lincomicina/metabolismo , Metionina Adenosiltransferase/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , S-Adenosilmetionina , Metabolismo Secundário , Streptomyces/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA