Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(35): 14584-14594, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37610823

RESUMO

Photocatalytic oxidation of toluene to valuable fine chemicals is of great significance, yet faces challenges in the development of advanced catalysts with both high activity and selectivity for the activation of inert C(sp3)-H bonds. Halide perovskites with remarkable optoelectronic properties have shown to be prospective photoactive materials, but the bulky structure with a small surface area and severe recombination of photogenerated electron-hole pairs are obstacles to application. Here, we fabricate a hierarchical nanoflower-shaped CsPbBr3/TiO2 heterojunction by assembling CsPbBr3 nanoparticles on 2D TiO2 nanoflake subunits. The design significantly downsizes the size of CsPbBr3 from micrometers to nanometers, and forms a type II heterojunction with intimate interfacial contact between CsPbBr3 and TiO2 nanoflakes, thereby accelerating the separation and transfer of photogenerated charges. Moreover, the formed hierarchical heterojunction increaseslight absorption by refraction and scattering, offers a large surface area and enhances the adsorption of toluene molecules. Consequently, the optimized CsPbBr3/TiO2 exhibits a high performance (10 200 µmol g-1 h-1) for photocatalytic toluene oxidation with high selectivity (85%) for benzaldehyde generation under visible light. The photoactivity is about 20 times higher than that of blank CsPbBr3, and is among the best photocatalytic performances reported for selective oxidation of toluene under visible light irradiation.

2.
Dalton Trans ; 51(13): 5168-5174, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35274640

RESUMO

It is a challenging task to explore highly active and stable noble-metal-free bifunctional electrocatalysts for water splitting, both in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a new dual-confinement strategy for the fabrication of cobalt-base phosphide in the carbon nanofibers (CNFs) was proposed via electrospinning, followed by the corresponding pyrolysis. The ultrafine phosphides derived from the pore confinement of ZIF and space confinement of the polymer revealed abundant active sites and P defects. More importantly, by introducing a second metal element Ni or Cu, the electronic structure and synergistic effect were further enhanced, and the obtained bimetallic CoNiPx-CNF electrocatalyst exhibited the remarkable performance for HER and OER, featuring the low η10 values of 154 and 269 mV in 1.0 M KOH electrolyte, respectively. CoNiPx-CNFs as a catalyst for both anode and cathode showed a current density of 10 mA cm-2 at a voltage of 1.56 V, exceeding better stability, which is superior to most non-noble metal electrocatalysts reported in a previous research. The dual-confinement strategy is believed to provide an effective and simple approach for the synthesis of high-performance and cost-efficient bifunctional electrocatalysts for overall water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA