Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Temperature (Austin) ; 9(4): 331-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339091

RESUMO

Heat acclimation (HA) protocols repeatedly expose individuals to heat stress. As HA is typically performed close to the pinnacle event, it is essential that the protocol does not compromise immune status, health, or wellbeing. The purpose of this study was to examine the effect of HA on resting salivary immunoglobulin-A (s-IgA) and salivary cortisol (s-cortisol), self-reported upper-respiratory tract symptoms, and self-reported wellness parameters. Seventeen participants (peak oxygen uptake 53.2 ± 9.0 mL·kg-1·min-1) completed a 10-day controlled-hyperthermia HA protocol, and a heat stress test both before (HST1) and after (HST2) HA (33°C, 65% relative humidity). Resting saliva samples were collected at HST1, day 3 and 7 of the HA protocol, HST2, and at 5 ± 1 days post-HA. Upper-respiratory tract symptom data were collected weekly from one week prior to HA until three weeks post HA, and wellness ratings were reported daily throughout HA. HA successfully induced physiological adaptations, with a lower end-exercise rectal temperature and heart rate and higher whole-body sweat rate at HST2 compared to HST1. In contrast, resting saliva flow rate, s-IgA concentration, s-cortisol concentration, and s-cortisol secretion rate remained unchanged (n = 11-14, P = 0.10-0.48). Resting s-IgA secretion rate increased by 39% from HST1 to HST2 (n = 14, P = 0.03). No changes were observed in self-reported upper respiratory tract symptoms and wellness ratings. In conclusion, controlled-hyperthermia HA did not negatively affect resting s-IgA and s-cortisol, self-reported upper-respiratory tract symptoms, and self-reported wellness parameters in recreational athletes.

2.
Eur J Sport Sci ; 22(12): 1827-1835, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34873991

RESUMO

ABSTRACTThe primary aim of this study was to examine if biomarker and/or self-reported data could predict upper respiratory tract symptom (URTS) risk in elite field hockey players. The secondary aim was to investigate the effect of the additional stressor 'repeated heat exposure' on measures of thermoregulation and immunity. A prospective cohort repeated measures study design was used to collect URTS, household illness, self-reported wellness, biomarker and thermoregulatory data from elite male field hockey players (n = 19), during an 8-week training and competition period that simulated the preparatory and competition phases of the 2020 Tokyo Olympics. Heat response testing (HRT) was performed at the beginning of the study period, following heat acclimation (HA) and following an intensified competition period (ICP) played in hot and humid conditions (27-37°C and 53-80% relative humidity). Univariate frailty analysis demonstrated that illness in players' households (Hazard ratio (HR: 4.90; p < 0.001)) and self-reported stress (HR: 0.63; p = 0.043) predicted players' risk for URTS. Additionally, low baseline resting salivary secretory immunoglobulin A (SIgA) concentration predicted players' "potential" URTS risk (p = 0.021). The additional stressor "repeated heat exposure" was found to facilitate partial thermoregulatory adaptation without attenuating resting immune functions. In conclusion, lifestyle and behavioural factors (i.e. household illness and stress) influenced players risk for URTS more so than sport-related stressors. Furthermore, repeated heat exposure did not appear to compromise players resting immunity. To assess athletes' risk for URTS, baseline screening of SIgA concentration and regular monitoring of self-reported lifestyle and behavioural data are recommended.Highlights Self-reported illness in players' households and higher self-reported stress significantly predicted increased upper respiratory tract symptom risk.Low baseline salivary secretory immunoglobulin A concentration predicted players "potential" URTS risk.Repeated heat exposures facilitated partial thermoregulatory adaptation without altering resting immunity.


Assuntos
Hóquei , Humanos , Masculino , Hóquei/fisiologia , Estudos Prospectivos , Tóquio , Imunoglobulina A Secretora , Biomarcadores , Sistema Respiratório
3.
J Sci Med Sport ; 24(5): 430-434, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33262041

RESUMO

OBJECTIVES: To identify periods of increased risk for upper respiratory tract symptom (URTS) episodes, and examine whether biomarkers and/or self-reported lifestyle and wellness data can predict URTS risk in elite rugby union players. DESIGN: Prospective, longitudinal and repeated-measures study. METHODS: Salivary secretory immunoglobulin A (SIgA), salivary cortisol, URTS, internal training load and self-reported lifestyle and wellness data including household illness, stress, mood, fatigue, muscle soreness and sleep quality were repeatedly measured in elite Southern hemisphere rugby union players (n=28) throughout a season. Univariate frailty model analysis, which included 495 observations, was used to determine predictors of URTS risk. RESULTS: Surprisingly, the highest incidence of URTS occurred after rest weeks, namely the Christmas break and bye weeks (i.e., no scheduled trainings or matches); whereas URTS risk was reduced during weeks involving international travel (Hazard ratio (HR): 0.43, p<0.001)). Household illness was the strongest predictor of URTS risk; players were almost three-fold more at risk for an URTS episode when illness in the household was present (HR: 2.90, p=0.002). A non-significant, but potentially important trend for an inverse association between SIgA concentration and URTS incidence was also observed (HR: 0.99, p=0.070). CONCLUSIONS: Rest weeks were identified as periods of increased risk for URTS; while international travel did not appear to increase players risk for URTS. Incidence of household illness and SIgA concentration independently predicted URTS risk, with household illness being the strongest predictor. These findings can assist practitioners monitoring and management of athletes to potentially reduce URTS risk.


Assuntos
Transmissão de Doença Infecciosa , Características da Família , Família , Futebol Americano , Infecções Respiratórias/transmissão , Adulto , Biomarcadores/metabolismo , Humanos , Hidrocortisona/metabolismo , Imunoglobulina A Secretora/metabolismo , Estudos Longitudinais , Estudos Prospectivos , Saliva , Inquéritos e Questionários , Adulto Jovem
4.
Front Physiol ; 10: 426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057419

RESUMO

Keeping athletes healthy will be important for optimal athletic performance at the 2020 Tokyo Summer Olympic and Paralympic Games. Athletes will be exposed to several stressors during the preparatory and competition phases of the Summer Games that have the potential to depress immunity and increase illness risk. This mini-review provides an overview on effective and practical stressor-specific illness prevention strategies that can be implemented to maintain and protect the health of Olympic and Paralympic athletes.

5.
J Sci Med Sport ; 21(12): 1192-1199, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29934212

RESUMO

OBJECTIVES: Elite team-sport athletes are frequently exposed to stressors that have the potential to depress immunity and increase infection risk. Therefore, the purpose of this review is to describe how team-sport stressors impact upon immune responses, along with exploring whether alterations in these markers have the potential to predict upper respiratory tract illness symptoms. DESIGN: Narrative review. METHODS: Salivary secretory immunoglobulin A (SIgA) and T-cell markers have been shown to predict infection risk in individual endurance athletes. Papers discussing the impact of team-sport stressors on SIgA and T-cells were discussed in the review, studies discussing other aspects of immunity were excluded. Journal articles were sourced from PubMed, Web of science and Scopus. Key search terms included team-sport athletes, stressors, immunity, T-cells, cytokines, SIgA and upper respiratory illness. RESULTS: Most team-sport stressors appear to increase risk for illness. An association between reduced SIgA and increased illness incidence has been demonstrated. Intensive training and competition periods have been shown to reduce SIgA, however, it is less clear how additional stressors including extreme environmental conditions, travel, psychological stress, sleep disturbance and poor nutrition affect immune responses. CONCLUSIONS: Monitoring SIgA may provide an assessment of a team-sport athletes risk status for developing upper respiratory tract symptoms, however there is currently not enough evidence to suggest SIgA alone can predict illness. Team-sport stressors challenge immunity and it is possible that the combination of stressors could have a compounding effect on immunodepression and infection risk. Given that illness can disrupt training and performance, further research is required to better elucidate how stressors individually and collectively influence immunity and illness.


Assuntos
Atletas , Sistema Imunitário/fisiopatologia , Imunoglobulina A Secretora/análise , Doenças Respiratórias/diagnóstico , Estresse Fisiológico/imunologia , Citocinas/imunologia , Humanos , Doenças Respiratórias/imunologia , Fatores de Risco , Saliva/química , Esportes , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA