Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Stem Cells Dev ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943285

RESUMO

Prostaglandin E2 (PGE2) has recently gained attention in the field of regenerative medicine due to the beneficial effects of this molecule on stem cell proliferation and migration. Furthermore, PGE2 has the ability to mitigate immune rejection and fibrosis. In the colon and kidney, PGE2 induces YAP1, a transcription factor critical for cardiac regeneration. Establishing a similar connection in stem cells that can be transplanted in the heart could lead to the development of more effective therapeutics. In this report, we identify the effects of PGE2 on neonatal Islet-1+ stem cells. These stem cells synthesize PGE2 which functions by stimulating the transcription of the extracellular matrix protein Agrin. Agrin upregulates YAP1. Consequently, both YAP1 and Agrin are induced by PGE2 treatment. Our study shows that PGE2 upregulated the expression of both YAP1 and Agrin in Islet-1+ stem cells through the EP4 receptor and stimulated proliferation using the same mechanisms. PGE2 administration further elevated the expression of stemness markers and the matrix metalloproteinase MMP9, a key regulator of remodeling in the extracellular matrix post injury. The expression of PGE2 in neonatal Islet-1+ cells is a factor which contributes to improving the functional efficacy of these cells for cardiac repair.

2.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175796

RESUMO

New stem cell and extracellular-vesicle-based therapies have the potential to improve outcomes for the increasing number of patients with heart failure. Since neonates have a significantly enhanced regenerative ability, we hypothesized that extracellular vesicles isolated from Islet-1+ expressing neonatal human cardiovascular progenitors (CPCs) will induce transcriptomic changes associated with improved regenerative capability when co-cultured with CPCs derived from adult humans. In order to test this hypothesis, we isolated extracellular vesicles from human neonatal Islet-1+ CPCs, analyzed the extracellular vesicle content using RNAseq, and treated adult CPCs with extracellular vesicles derived from neonatal CPCs to assess their functional effect. AKT, ERBB, and YAP1 transcripts were elevated in adult CPCs treated with neonatal CPC-derived extracellular vesicles. YAP1 is lost after the neonatal period but can stimulate cardiac regeneration. Our results demonstrate that YAP1 and additional transcripts associated with improved cardiovascular regeneration, as well as the activation of the cell cycle, can be achieved by the treatment of adult CPCs with neonatal CPC-derived extracellular vesicles. Progenitor cells derived from neonates secrete extracellular vesicles with the potential to stimulate and potentially improve functional effects in adult CPCs used for cardiovascular repair.


Assuntos
Células-Tronco Adultas , Vesículas Extracelulares , Recém-Nascido , Humanos , Adulto , Miócitos Cardíacos/metabolismo , Células Cultivadas , Células-Tronco/metabolismo , Diferenciação Celular
3.
Tissue Eng Part A ; 29(13-14): 358-371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071180

RESUMO

Surgical implantation of decellularized cadaveric arteries is routinely used to treat right-sided congenital cardiac lesions. These acellular conduits lack the capacity for somatic growth and are prone to stenosis and calcification, necessitating multiple operations throughout childhood. Islet-1+ cardiovascular progenitor cells (CPCs) have demonstrated the capacity for differentiation into all cell types of the heart and outflow tracts. We hypothesize that CPC seeding of decellularized pulmonary arteries and bioreactor culture under physiologic flow conditions will drive vascular differentiation of CPCs and result in a conduit more suitable for implantation and long-term growth. We began by decellularizing ovine pulmonary arteries and characterizing the composition of the extracellular matrix (ECM). Hemodynamic testing of decellularized vessels in a custom bioreactor was used to define the scaffold mechanical properties over a range of pressures and flow rates. Next, our expanded ovine CPCs were suspended in growth media and injected intramurally into decellularized pulmonary arteries that were subsequently cultured in either static or pulsatile cultures. A combination of immunohistochemistry, real-time polymerase chain reaction (PCR), and tissue bath contraction studies were used to evaluate the bioengineered arteries before transplantation. Pulmonary artery patches from the most favorable culture conditions were then implanted into juvenile sheep to provide proof of concept. Hematoxylin and eosin staining indicated complete removal of cell nuclei (n = 9), whereas double-stranded DNA isolation from tissue homogenates showed 99.1% DNA removal (p < 0.01, n = 4). Furthermore, trichrome and elastin staining verified maintenance of collagen and elastin. Immunohistochemistry and PCR analyses (n = 4 per group) confirmed contractile smooth muscle presence on only our 3-week pulsatile scaffolds via presence of calponin 1 and myosin heavy chain 11. Tissue bath studies demonstrated that smooth muscle contraction generated by our 3-week pulsatile scaffolds (2.23 ± 0.19 g, n = 4) is comparable with native tissue contraction strength (2.78 ± 0.06 g, n = 4). Ovine transplantation confirmed that our graft can be safely implanted, retains contractile smooth muscle cells, and recruits native endothelium. Longer duration of physiologic pulsatile culture drives differentiation of CPCs seeded on ECM conduits toward a mature, contractile phenotype that is maintained for several weeks in vivo. Longer term studies to assess somatic growth potential are needed. Impact statement The current field of vascular transplantation relies on cadaveric and synthetic grafts to treat right-sided congenital cardiac lesions. These grafts do not grow somatically with our patients. This results in multiple reoperations throughout childhood to increase the size of the graft. Our bioengineered alternative demonstrates successful implantation, contractile smooth muscle cells, and a native endothelial layer. This research demonstrates a pilot study confirming the viability of a bioengineered alternative to the current standard of care in the field of vascular transplantation.


Assuntos
Elastina , Engenharia Tecidual , Ovinos , Animais , Engenharia Tecidual/métodos , Biomimética , Fluxo Pulsátil , Projetos Piloto , Células Cultivadas , Prótese Vascular , Contração Muscular , Cadáver , Alicerces Teciduais
4.
Biomolecules ; 13(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830740

RESUMO

Efforts to understand the impact of spaceflight on the human body stem from growing interest in long-term space travel. Multiple organ systems are affected by microgravity and radiation, including the cardiovascular system. Previous transcriptomic studies have sought to reveal the changes in gene expression after spaceflight. However, little is known about the impact of long-term spaceflight on the mouse heart in vivo. This study focuses on the transcriptomic changes in the hearts of female C57BL/6J mice flown on the International Space Station (ISS) for 30 days. RNA was isolated from the hearts of three flight and three comparable ground control mice and RNA sequencing was performed. Our analyses showed that 1147 transcripts were significantly regulated after spaceflight. The MAPK, PI3K-Akt, and GPCR signaling pathways were predicted to be activated. Transcripts related to cytoskeleton breakdown and organization were upregulated, but no significant change in the expression of extracellular matrix (ECM) components or oxidative stress pathway-associated transcripts occurred. Our results indicate an absence of cellular senescence, and a significant upregulation of transcripts associated with the cell cycle. Transcripts related to cellular maintenance and survival were most affected by spaceflight, suggesting that cardiovascular transcriptome initiates an adaptive response to long-term spaceflight.


Assuntos
Voo Espacial , Transcriptoma , Feminino , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica
5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675298

RESUMO

The utilization of cardiac progenitor cells (CPCs) has been shown to induce favorable regenerative effects. While there are various populations of endogenous CPCs in the heart, there is no consensus regarding which population is ideal for cell-based regenerative therapy. Early-stage progenitor cells can be differentiated into all cardiovascular lineages, including cardiomyocytes and endothelial cells. Identifying an Islet-1+ (Isl-1+) early-stage progenitor population with enhanced stemness, multipotency and differentiation potential would be beneficial for the development of novel regenerative therapies. Here, we investigated the transcriptome of human neonatal Isl-1+ CPCs. Isl-1+ human neonatal CPCs exhibit enhanced stemness properties and were found to express Spalt-like transcription factor 4 (SALL4). SALL4 plays a role in embryonic development as well as proliferation and expansion of hematopoietic progenitor cells. SALL4, SOX2, EpCAM and TBX5 are co-expressed in the majority of Isl-1+ clones isolated from neonatal patients. The pre-mesendodermal transcript TFAP2C was identified in select Isl-1, SALL4, SOX2, EpCAM and TBX5 expressing clones. The ability to isolate and expand pre-mesendodermal stage cells from human patients is a novel finding that holds potential value for applications in regenerative medicine.


Assuntos
Células Endoteliais , Fatores de Transcrição , Recém-Nascido , Humanos , Fatores de Transcrição/genética , Molécula de Adesão da Célula Epitelial , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , Células Clonais
6.
Cell Transplant ; 31: 9636897221136787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36564913

RESUMO

Myocardial infarctions affect approximately 735,000 people annually in the United States and have a substantial impact on quality of life. Neonates have an enhanced capability of repairing cardiovascular damage, while adults do not. The mechanistic basis for this age-dependent difference in regenerative capacity remains unknown. Recent studies have shown that microRNAs (miRNAs) play a significant role in regulating the regenerative ability of cardiovascular cells. This report defines the alterations in miRNA expression within the cardiovascular repair zone of infarcted sheep hearts following intracardiac injection of neonatal islet-1+ cardiovascular progenitor cells. Sheep were infarcted via left anterior descending coronary artery ligation. After 3 to 4 weeks of infarction, sheep neonatal islet-1+ cardiovascular progenitor cells were injected into the infarcted area for repair. Cell-treated sheep were euthanized 2 months following cell injection, and their hearts were harvested for the analysis of miRNA and gene expression within the cardiovascular repair zone. Ten miRNAs were differentially regulated in vivo, including miR-99, miR-100, miR-302a, miR-208a, miR-665, miR-1, miR-499a, miR-34a, miR-133a, and miR-199a. These miRNAs promote stemness, cell division, and survival. Several signaling pathways are regulated by these miRNAs, including Hippo, Wnt, and Erythroblastic Leukemia Viral Oncogene B (ERBB). Transcripts encoding Wnt, ERBB, and Neuregulin 1 (NRG1) were elevated in vivo in the infarct repair zone. Wnt5a signaling and ERBB/NRG1 transcripts contribute to activation of Yes-Associated Protein 1. MiRNAs that impact proliferation, cell survival, and signaling pathways that promote regeneration were induced during cardiovascular repair in the sheep model. This information can be used to design new approaches for the optimization of miRNA-based treatments for the heart.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Ovinos/genética , Qualidade de Vida , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Transplante de Células
7.
Stem Cell Reports ; 17(1): 1-13, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971562

RESUMO

Research in low Earth orbit (LEO) has become more accessible. The 2020 Biomanufacturing in Space Symposium reviewed space-based regenerative medicine research and discussed leveraging LEO to advance biomanufacturing for regenerative medicine applications. The symposium identified areas where financial investments could stimulate advancements overcoming technical barriers. Opportunities in disease modeling, stem-cell-derived products, and biofabrication were highlighted. The symposium will initiate a roadmap to a sustainable market for regenerative medicine biomanufacturing in space. This perspective summarizes the 2020 Biomanufacturing in Space Symposium, highlights key biomanufacturing opportunities in LEO, and lays the framework for a roadmap to regenerative medicine biomanufacturing in space.


Assuntos
Materiais Biocompatíveis , Meio Ambiente Extraterreno , Manufaturas , Medicina Regenerativa , Inteligência Artificial , Automação , Bioengenharia , Humanos , Aprendizado de Máquina , Pesquisa
8.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502291

RESUMO

Early-stage mammalian embryos survive within a low oxygen tension environment and develop into fully functional, healthy organisms despite this hypoxic stress. This suggests that hypoxia plays a regulative role in fetal development that influences cell mobilization, differentiation, proliferation, and survival. The long-term hypoxic environment is sustained throughout gestation. Elucidation of the mechanisms by which cardiovascular stem cells survive and thrive under hypoxic conditions would benefit cell-based therapies where stem cell survival is limited in the hypoxic environment of the infarcted heart. The current study addressed the impact of long-term hypoxia on fetal Islet-1+ cardiovascular progenitor cell clones, which were isolated from sheep housed at high altitude. The cells were then cultured in vitro in 1% oxygen and compared with control Islet-1+ cardiovascular progenitor cells maintained at 21% oxygen. RT-PCR, western blotting, flow cytometry, and migration assays evaluated adaptation to long term hypoxia in terms of survival, proliferation, and signaling. Non-canonical Wnt, Notch, AKT, HIF-2α and Yap1 transcripts were induced by hypoxia. The hypoxic niche environment regulates these signaling pathways to sustain the dedifferentiation and survival of fetal cardiovascular progenitor cells.


Assuntos
Sistema Cardiovascular/embriologia , Hipóxia Celular/fisiologia , Células-Tronco/citologia , Animais , Sistema Cardiovascular/citologia , Ciclo Celular , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Feminino , Hipóxia/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ovinos , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808224

RESUMO

Understanding the transcriptomic impact of microgravity and the spaceflight environment is relevant for future missions in space and microgravity-based applications designed to benefit life on Earth. Here, we investigated the transcriptome of adult and neonatal cardiovascular progenitors following culture aboard the International Space Station for 30 days and compared it to the transcriptome of clonally identical cells cultured on Earth. Cardiovascular progenitors acquire a gene expression profile representative of an early-stage, dedifferentiated, stem-like state, regardless of age. Signaling pathways that support cell proliferation and survival were induced by spaceflight along with transcripts related to cell cycle re-entry, cardiovascular development, and oxidative stress. These findings contribute new insight into the multifaceted influence of reduced gravitational environments.


Assuntos
Mioblastos/fisiologia , Transcriptoma/genética , Ausência de Peso/efeitos adversos , Técnicas de Cultura de Células , Proliferação de Células/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética , Voo Espacial , Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167392

RESUMO

Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Expressão Gênica , Mioblastos Cardíacos/metabolismo , Fosfoproteínas/genética , Voo Espacial , Simulação de Ausência de Peso , Ausência de Peso , Animais , Biomarcadores , Diferenciação Celular/genética , Via de Sinalização Hippo , Humanos , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/genética , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Ovinos , Transdução de Sinais , Transplante de Células-Tronco , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
11.
NPJ Microgravity ; 4: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30062101

RESUMO

The heart and its cellular components are profoundly altered by missions to space and injury on Earth. Further research, however, is needed to characterize and address the molecular substrates of such changes. For this reason, neonatal and adult human cardiovascular progenitor cells (CPCs) were cultured aboard the International Space Station. Upon return to Earth, we measured changes in the expression of microRNAs and of genes related to mechanotransduction, cardiogenesis, cell cycling, DNA repair, and paracrine signaling. We additionally assessed endothelial-like tube formation, cell cycling, and migratory capacity of CPCs. Changes in microRNA expression were predicted to target extracellular matrix interactions and Hippo signaling in both neonatal and adult CPCs. Genes related to mechanotransduction (YAP1, RHOA) were downregulated, while the expression of cytoskeletal genes (VIM, NES, DES, LMNB2, LMNA), non-canonical Wnt ligands (WNT5A, WNT9A), and Wnt/calcium signaling molecules (PLCG1, PRKCA) was significantly elevated in neonatal CPCs. Increased mesendodermal gene expression along with decreased expression of mesodermal derivative markers (TNNT2, VWF, and RUNX2), reduced readiness to form endothelial-like tubes, and elevated expression of Bmp and Tbx genes, were observed in neonatal CPCs. Both neonatal and adult CPCs exhibited increased expression of DNA repair genes and paracrine factors, which was supported by enhanced migration. While spaceflight affects cytoskeletal organization and migration in neonatal and adult CPCs, only neonatal CPCs experienced increased expression of early developmental markers and an enhanced proliferative potential. Efforts to recapitulate the effects of spaceflight on Earth by regulating processes described herein may be a promising avenue for cardiac repair.

12.
Am J Stem Cells ; 7(1): 1-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531855

RESUMO

The use of cardiovascular progenitor cells (CPCs) to repair damaged myocardium has been the focus of intense research. Previous reports have shown that pretreatments, including hypoxia, improve cell function. However, the age-dependent effects of short-term hypoxia on CPCs, and the role of signaling in these effects, are unknown. Cloned neonatal and adult CPCs expressing Isl1, c-Kit, KDR, PDGFRA, and CXCR4, were preconditioned using hypoxia (1% O2 for six hours). Intracellular signaling pathway changes were modeled using Ingenuity Pathway Analysis (IPA), while qRT-PCR, flow cytometry, and immunoblotting were used to measure pathway activation. Cellular function, including survival, cell cycle, and invasion, were evaluated using a TUNEL assay, flow cytometry, and a Transwell® invasion assay, respectively. IPA predicted, and RT-PCR and flow cytometry confirmed, that the PI3K/AKT pathway was activated following short-term hypoxia. Heat shock protein (HSP) 40 expression increased significantly in both age groups, while HSP70 expression increased only in neonatal CPCs. Neonatal CPC invasion and survival improved after hypoxia pre-treatment, while no effect was observed in cell cycling and developmental status. Prostaglandin receptor expression was enhanced in neonatal cells. Prior to transplantation, hypoxic preconditioning enhances CPC function, including invasion ability and pro-survival pathway activation.

13.
Stem Cells Dev ; 27(12): 805-818, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29320953

RESUMO

Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.


Assuntos
Miócitos Cardíacos/enzimologia , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Voo Espacial , Células-Tronco/enzimologia , Simulação de Ausência de Peso , Humanos , Miocárdio/enzimologia
14.
Transplant Direct ; 3(5): e153, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573188

RESUMO

BACKGROUND: Cardiovascular progenitor cells (CPCs) have been cultured on various scaffolds to resolve the challenge of cell retention after transplantation and to improve functional outcome after cell-based cardiac therapy. Previous studies have reported successful culture of fully differentiated cardiomyocytes on scaffolds of various types, and ongoing efforts are focused on optimizing the mix of cardiomyocytes and endothelial cells as well as on the identification of a source of progenitors capable of reversing cardiovascular damage. A scaffold culture that fosters cell differentiation into cardiomyocytes and endothelial cells while maintaining a progenitor reserve would benefit allogeneic cell transplantation. METHODS: Isl-1 + c-Kit + CPCs were isolated as clonal populations from human and sheep heart tissue. After hyper-crosslinked carbohydrate polymer scaffold culture, cells were assessed for differentiation, intracellular signaling, cell cycling, and growth factor/chemokine expression using real time polymerase chain reaction, flow cytometry, immunohistochemistry, and calcium staining. RESULTS: Insulin-like growth factor 1, hepatocyte growth factor, and stromal cell derived factor 1α paracrine factors were induced, protein kinase B signaling was activated, extracellular signal-regulated kinase phosphorylation was reduced and differentiation into both cardiomyocytes and endothelial cells was induced by scaffold-based cell culture. Interestingly, movement of CPCs out of the G1 phase of the cell cycle and increased expression of pluripotency genes PLOU5F1 (Oct4) and T (Brachyury) within a portion of the cultured population occurred, which suggests the maintenance of a progenitor population. Two-color immunostaining and 3-color fluorescence-activated cell sorting analysis confirmed the presence of both Isl-1 expressing undifferentiated cells and differentiated cells identified by troponin T and von Willebrand factor expression. Ki-67 labeling verified the presence of proliferating cells that remained in situ alongside the differentiated functional derivatives. CONCLUSIONS: Cloned Isl-1 + c-kit + CPCs maintained on a hyper-cross linked polymer scaffold retain dual potential for proliferation and differentiation, providing a scaffold-based stem cell source for transplantation of committed and proliferating cardiovascular progenitors for functional testing in preclinical models of cell-based repair.

15.
Xenotransplantation ; 22(6): 413-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26490547

RESUMO

BACKGROUND: Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies. However, because this compound had an unknown safety profile, we extended this line of research to include screening small molecules with known safety profiles allowing rapid advancement to large animal models. METHODS: The NIH clinical collections of small molecules were screened by ELISA for their ability to inhibit xenoantibody binding to GTKO pig endothelial cells. Serum collected from non-immunosuppressed rhesus monkeys at day 14 post-injection with GTKO pig endothelial cells was utilized as a source of elicited xenoantibody for initial screening. Virtual small molecule screening based on xenoantibody structure was used to assess the likelihood that the identified small molecules bound xenoantibody directly. As a proxy for selectivity, ELISAs against tetanus toxoid and the natural antigens laminin, thyroglobulin, and single-stranded DNA (ssDNA) were utilized to assess the ability of the identified reagents to inhibit additional antibody responses. The identified inhibitory small molecules were further tested for their ability to inhibit xenoantibody elicited in multiple settings, including rhesus monkeys pre-treated with an anti-non-Gal selective anti-idiotypic antibody, non-immunosuppressed rhesus monkeys immunized with wild-type fetal pig isletlike cell clusters, and non-immunosuppressed baboons transplanted with GTKO multiple transgenic pig kidneys. RESULTS: Four clinically relevant small molecules inhibited anti-non-Gal IgM binding to GTKO pig endothelial cells in vitro. Three of these drugs displayed a limited region of structural similarity suggesting they may inhibit xenoantibody by a similar mechanism. One of these, the anti-hypertensive agent clonidine, displayed only minimal inhibition of antibodies elicited by vaccination against tetanus toxoid or pre-existing natural antibodies against laminin, thyroglobulin, or ssDNA. Furthermore, clonidine inhibited elicited anti-non-Gal IgM from all animals that demonstrated a xenoantibody response in each experimental setting. CONCLUSIONS: Clinically relevant small molecule drugs with known safety profiles can inhibit xenoantibody elicited against non-Gal antigens in diverse experimental xenotransplantation settings. These molecules are ready to be tested in large animal models. However, it will first be necessary to optimize the timing and dosing required to inhibit xenoantibodies in vivo.


Assuntos
Anticorpos Heterófilos/sangue , Clonidina/farmacologia , Xenoenxertos/imunologia , Papio/imunologia , Animais , Técnicas de Inativação de Genes , Imunoglobulina M/imunologia , Macaca mulatta , Modelos Animais , Sus scrofa , Suínos , Transplante Heterólogo/métodos
16.
PLoS One ; 10(7): e0132378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161778

RESUMO

Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05). Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation). These microRNAs were unchanged in adult cardiac progenitors. The effect of exposure to simulated microgravity in cardiovascular progenitors is age-dependent. Adult cardiac progenitors showed elevated expression of markers for endothelial and cardiomyogenic differentiation whereas neonatal progenitors acquired characteristics of dedifferentiating cells.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular , Separação Celular/métodos , Miocárdio/citologia , Células-Tronco/citologia , Simulação de Ausência de Peso , Idoso , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Reparo do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
17.
Xenotransplantation ; 21(4): 341-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806998

RESUMO

BACKGROUND: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells. METHODS: A recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level. RESULTS: Antibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII. CONCLUSIONS: The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because "normal" coagulation parameters after successful xenotransplantation are not fully understood.


Assuntos
Fator VIII/antagonistas & inibidores , Transplante das Ilhotas Pancreáticas/efeitos adversos , Macaca mulatta/imunologia , Papio/imunologia , Transplante Heterólogo/efeitos adversos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Anticorpos Heterófilos/biossíntese , Anticorpos Heterófilos/química , Anticorpos Heterófilos/genética , Simulação por Computador , Células Endoteliais/imunologia , Células Endoteliais/transplante , Fator VIII/química , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Humanos , Transplante das Ilhotas Pancreáticas/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Sus scrofa
18.
Xenotransplantation ; 21(3): 254-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24635144

RESUMO

BACKGROUND: B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance. METHODS: The anti-idiotypic antibody, B4N190, was selected from a synthetic human phage display library after enrichment against a recombinant anti-non-Gal xenoantibody followed by functional testing in vitro. The inhibitory small molecule, JMS022, was selected from the NCI diversity set III using virtual screening based on predicted xenoantibody structure. Three rhesus monkeys were pre-treated with anti-non-Gal-specific single-chain anti-idiotypic antibody, B4N190. A total of five monkeys, including two untreated controls, were then immunized with GTKO porcine endothelial cells to initiate an anti-non-α-1,3-Gal (non-Gal) xenoantibody response. The efficacy of the inhibitory small molecule specific for anti-non-Gal xenoantibody, JMS022, was tested in vitro. RESULTS: After the combination of in vivo anti-id and in vitro small molecule treatments, IgM xenoantibody binding to GTKO cells was reduced to pre-immunization levels in two-thirds of animals; however, some xenoantibodies remained in the third animal. Furthermore, when treated with anti-id alone, all three experimental animals displayed a lower anti-non-Gal IgG xenoantibody response compared with controls. Treatment with anti-idiotypic antibody alone reduced IgM xenoantibody response intensity in only one of three monkeys injected with GTKO pig endothelial cells. In the one experimental animal, which displayed reduced IgM and IgG responses, select B-cell subsets were also reduced by anti-id therapy alone. Furthermore, natural antibody responses, including anti-laminin, anti-ssDNA, and anti-thyroglobulin antibodies were intact despite targeted depletion of anti-non-Gal xenoantibodies in vivo indicating that selective reduction of xenoantibodies can be accomplished without total B-cell depletion. CONCLUSIONS: This preliminary study demonstrates the strength of approaches designed to selectively inhibit anti-non-Gal xenoantibody. Both anti-non-Gal-specific anti-idiotypic antibody and small molecules can be used to selectively limit xenoantibody responses.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Heterófilos/imunologia , Rejeição de Enxerto/prevenção & controle , Imunoglobulina M/imunologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Anticorpos Anti-Idiotípicos/metabolismo , Anticorpos Heterófilos/metabolismo , Linfócitos B/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Marcadores Genéticos , Rejeição de Enxerto/imunologia , Imunoglobulina M/metabolismo , Macaca mulatta , Suínos/genética
19.
Xenotransplantation ; 21(3): 244-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24645827

RESUMO

BACKGROUND: Promising developments in porcine islet xenotransplantation could resolve the donor pancreas shortage for patients with type 1 diabetes. Using α1,3-galactosyltransferase gene knockout (GTKO) donor pigs with multiple transgenes should extend xenoislet survival via reducing complement activation, thrombus formation, and the requirement for exogenous immune suppression. Studying the xenoantibody response to GTKO/hCD55/hCD59/hHT islets in the pig-to-baboon model, and comparing it with previously analyzed responses, would allow the development of inhibitory reagents capable of targeting conserved idiotypic regions. METHODS: We generated IgM heavy and light chain gene libraries from 10 untreated baboons and three baboons at 28 days following transplantation of GTKO/hCD55/hCD59/hHT pig neonatal islet cell clusters with immunosuppression. Flow cytometry was used to confirm the induction of a xenoantibody response. IgM germline gene usage was compared pre- and post-transplant. Homology modeling was used to compare the structure of xenoantibodies elicited after transplantation of GTKO/hCD55/hCD59/hHT pig islets with those induced by GTKO and wild-type pig endothelial cells without further genetic modification. RESULTS: IgM xenoantibodies that bind to GTKO pig cells and wild-type pig cells were induced after transplantation. These anti-non-Gal antibodies were encoded by the IGHV3-66*02 (Δ28%) and IGKV1-12*02 (Δ25%) alleles, for the immunoglobulin heavy and light chains, respectively. IGHV3-66 is 86.7% similar to IGHV3-21 which was elicited by rhesus monkeys in response to GTKO endothelial cells. Heavy chain genes most similar to IGHV3-66 were found to utilize the IGHJ4 gene in 85% of V-D regions analyzed. However, unlike the wild-type response, a consensus complementary determining region 3 was not identified. CONCLUSIONS: Additional genetic modifications in transgenic GTKO pigs do not substantially modify the structure of the restricted group of anti-non-Gal xenoantibodies that mediate induced xenoantibody responses with or without immunosuppression. The use of this information to develop new therapeutic agents to target this restricted response will likely be beneficial for long-term islet cell survival and for developing targeted immunosuppressive regimens with less toxicity.


Assuntos
Animais Geneticamente Modificados , Anticorpos Heterófilos/metabolismo , Rejeição de Enxerto/imunologia , Imunoglobulina M/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Suínos/genética , Transplante Heterólogo/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomarcadores/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Marcadores Genéticos , Rejeição de Enxerto/prevenção & controle , Imunoglobulina M/genética , Dados de Sequência Molecular , Papio
20.
PLoS One ; 8(10): e77464, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204836

RESUMO

Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.


Assuntos
Células-Tronco Adultas/citologia , Epigênese Genética , MicroRNAs/genética , Miócitos Cardíacos/citologia , Regeneração/genética , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Fatores Etários , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA