Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3283, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078889

RESUMO

The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.

2.
Nanoscale ; 10(27): 13159-13164, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29963676

RESUMO

Unraveling nanoscale spin structures has long been an important activity addressing various scientific interests, that are also readily adaptable to technological applications. This has invigorated the development of versatile nanoprobes suitable for imaging specimens under native conditions. Here we have demonstrated the resonant coherent diffraction of an artificial quasicrystal magnet with circularly polarized X-rays. The nanoscale magnetic structure was revealed from X-ray speckle patterns by comparing with micromagnetic simulations, as a step toward understanding the intricate relationship between the chemical and spin structures in an aperiodic quasicrystal lattice. Femtosecond X-ray pulses from free electron lasers are expected to immediately extend the current work to nanoscale structure investigations of ultrafast spin dynamics, surpassing the present spatio-temporal resolution.

3.
Nat Commun ; 8: 15232, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508882

RESUMO

Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdOx tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and a large proximity-induced magnetization of GdOx, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. These results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.

4.
Phys Rev B ; 93(13)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28691109

RESUMO

We have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins.

5.
Nano Lett ; 14(5): 2509-14, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24697503

RESUMO

We investigate structural coupling of the MnO6 octahedra across a film/substrate interface and the resultant changes of the physical properties of ultrathin La2/3Sr1/3MnO3 (LSMO) films. In order to isolate the effect of interfacial MnO6 octahedral behavior from that of epitaxial strain, LSMO films are grown on substrates with different symmetry and similar lattice parameters. Ultrathin LSMO films show an increased magnetization and electrical conductivity on cubic (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) compared to those grown on orthorhombic NdGaO3 (NGO) substrates, an effect that subsides as the thickness of the films is increased. This study demonstrates that interfacial structural coupling can play a critical role in the functional properties of oxide heterostructures.

6.
Nat Commun ; 4: 2960, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24343382

RESUMO

The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.

7.
J Synchrotron Radiat ; 20(Pt 4): 654-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23765311

RESUMO

The Short Pulse X-ray facility planned for the Advanced Photon Source (APS) upgrade will provide two sectors with photon beams having picosecond pulse duration. The Short Pulse Soft X-ray Spectroscopy (SPSXS) beamline will cover the 150-2000 eV energy range using an APS bending magnet. SPSXS is designed to take full advantage of this new timing capability in addition to providing circular polarized radiation. Since the correlation between time and electron momentum is in the vertical plane, the monochromator disperses in the horizontal plane. The beamline is designed to maximize flux and preserve the time resolution by minimizing the number of optical components. The optical design allows the pulse duration to be varied from 1.5 to 100 ps full width at half-maximum (FWHM) without affecting the energy resolution, and the resolution to be changed with minimal effect on the pulse duration. More than 10(9) photons s(-1) will reach the sample with a resolving power of 2000 and a pulse duration of ∼2 ps for photon energies between 150 and 1750 eV. The spot size expected at the sample position will vary with pulse duration and exit slit opening. At 900 eV and at a resolving power of 2000 the spot will be ∼10 µm × 10 µm with a pulse duration of 2.3 ps FWHM.

8.
Rep Prog Phys ; 75(2): 026501, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22790347

RESUMO

As interest in magnetic devices has increased over the last 20 years, research into nanomagnetism has experienced a corresponding growth. Device applications from magnetic storage to magnetic logic have compelled interest in the influence of geometry and finite size on magnetism and magnetic excitations, in particular where the smallest dimensions reach the important magnetic interaction length scales. The dynamical behavior of nanoscale magnets is an especially important subset of research, as these phenomena are both critical for device physics and profoundly influenced by finite size. At the same time, nanoscale systems offer unique geometries to promote and study model systems, such as magnetic vortices, leading to new fundamental insights into magnetization dynamics. A wide array of experimental and computational techniques have been applied to these problems. Among these, imaging techniques that provide real-space information on the magnetic order are particularly useful. X-ray microscopy offers several advantages over scanning probe or optical techniques, such as high spatial resolution, element specificity and the possibility for high time resolution. Here, we review recent contributions using static and time-resolved x-ray photoemission electron microscopy to nanomagnetism research.

9.
Nanoscale ; 4(16): 5138-47, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22797330

RESUMO

Inverted soft/hard, in contrast to conventional hard/soft, bi-magnetic core/shell nanoparticles of Mn(x)Fe(3-x)O(4)/Fe(x)Mn(3-x)O(4) with two different core sizes (7.5 and 11.5 nm) and fixed shell thickness (∼0.6 nm) have been synthesized. The structural characterization suggests that the particles have an interface with a graded composition. The magnetic characterization confirms the inverted soft/hard structure and evidences a strong exchange coupling between the core and the shell. Moreover, larger soft core sizes exhibit smaller coercivities and loop shifts, but larger blocking temperatures, as expected from spring-magnet or graded anisotropy structures. The results indicate that, similar to thin film systems, the magnetic properties of soft/hard core/shell nanoparticles can be fine tuned to match specific applications.

10.
Phys Rev Lett ; 108(18): 187601, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681119

RESUMO

We present the refinement of the crystal structure of charge-ordered LuFe2O4, based on single-crystal x-ray diffraction data. The arrangement of the different Fe-valence states, determined with bond-valence-sum analysis, corresponds to a stacking of charged Fe bilayers, in contrast with the polar bilayers previously suggested. This arrangement is supported by an analysis of x-ray magnetic circular dichroism spectra, which also evidences a strong charge-spin coupling. The nonpolar bilayers are inconsistent with charge order based ferroelectricity.

11.
Phys Rev Lett ; 98(12): 126403, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17501140

RESUMO

We combine x-ray magnetic circular dichroism spectroscopy at Fe L2,3 edges, at Eu M4,5 edges, x-ray absorption spectroscopy (XAS) investigation of Eu valence, and local spin density calculations, to show that the filled skutterudite Eu0.95Fe4Sb12 is a ferrimagnet in which the Fe 3d moment and the Eu2+ 4f moment are magnetically ordered with dominant antiferromagnetic coupling. From Eu L3 edge XAS, we find that about 13% of the Eu have a formal valence of 3+. We ascribe the origin of ferrimagnetism at a relatively high transition temperature TC of 85 K in Eu0.95Fe4Sb12 to f-electron interaction with the nearly ferromagnetic [Fe4Sb12]2.2- host lattice.

12.
Phys Rev Lett ; 98(14): 147202, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501307

RESUMO

We report a time-resolved imaging study of the influence of shape on magnetic instabilities in patterned magnetic structures. We find that in rectangular structures magnetization reversal initiates at the ends and interior simultaneously, while in structures with tapered ends the reversal begins in the middle of the structures and spreads out to the ends. The degree of tapering is important for both the switching field and the time required for full reversal. A model based on the concept of local instability regions yields good agreement with the observed location of the reversal onsets.

13.
Phys Rev Lett ; 96(6): 067205, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16606041

RESUMO

We report direct imaging by means of x-ray photoemission electron microscopy of the dynamics of magnetic vortices confined in micron-sized circular permalloy dots that are 30 nm thick. The vortex core positions oscillate on a 10 ns time scale in a self-induced magnetostatic potential well after the in-plane magnetic field is turned off. The measured oscillation frequencies as a function of the aspect ratio of the dots are in agreement with theoretical calculations presented for the same geometry.

14.
Phys Rev Lett ; 95(25): 257201, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384500

RESUMO

We report a study of the Mn local structure, magnetism, and Ga moments in molecular beam epitaxy grown Mn-doped GaN films. Using x-ray absorption spectroscopy and magnetic circular dichroism, we find two distinct Mn sites and a Ga moment antiparallel to Mn. First-principles calculations reproduce this phenomenology and indicate that Mn preferentially populates Ga sites neighboring N split interstitial defects. These results show that defects may strongly affect the Mn ordering and magnetism, and that the GaN valence band is polarized, providing a long-range ferromagnetic ordering mechanism for Ga1-xMnxN.

15.
Phys Rev Lett ; 91(18): 187203, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14611312

RESUMO

We report induced Ga and As moments in ferromagnetic Ga(1-x)MnxAs detected using x-ray magnetic circular dichroism at the Mn, Ga, and As L(3,2) edges. Across a broad composition range, we find As and Ga dichroism signals which indicate an As 4s moment coupled antiparallel to the Mn 3d moment, and a smaller parallel Ga 4s moment. The Ga moment follows that of Mn in both doping and temperature dependence. These results are consistent with recent predictions of induced GaAs host moments and support the model of carrier-mediated ferromagnetic ordering involving As-derived valence band states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA