Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26387, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449648

RESUMO

Yam (Dioscorea spp.) is a staple food crop with cultural, nutritional and economic significance for millions of small-scale farmers in sub-Saharan Africa. While various virus-like symptoms such as mosaic and chlorosis are frequently observed in yam fields in Ethiopia, little information is available on the prevalence, distribution, and molecular characteristics of viruses causing these symptoms. The aim of this study was to investigate the incidence and distribution of yam viruses and determine the primary cause of yam mosaic diseases (YMD) in Ethiopia. Both symptomatic (n = 280) and asymptomatic (n = 110) yam leaf samples were collected and tested for potyviruses using ACP-ELISA. In addition, the symptomatic leaf samples were screened for yam mosaic virus (YMV), yam mild mosaic virus (YMMV), and cucumber mosaic virus (CMV) by DAS-ELISA. Subsequently, total RNA was extracted from 130 leaf samples comprising 94 symptomatic and 36 asymptomatic samples representing the different study areas. The representative RT-PCR amplicons (n = 6) were Sanger sequenced. The ACP-ELISA and DAS-ELISA results showed 9.2%, and 12.9% YMV infection, respectively, while the RT-PCR analysis showed 28.5% YMV positivity rate. Both CMV and YMMV were not detected in any of the samples tested. Thus, YMV is confirmed as the primary cause of YMD in Ethiopia. YMV isolates from Ethiopia shared 92-93% nucleotide identity among themselves and 85-99% with other YMV isolates from the GenBank. Phylogenetic analysis revealed that YMV isolates from Ethiopia, South America, and west-central Africa have the most recent common ancestor, while isolates from China and Japan are clustered as sister groups. This study enhances our understanding of YMV's genetic diversity and provides valuable information regarding the first report of YMV in Ethiopia.

2.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432099

RESUMO

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Assuntos
Metagenômica , Xanthomonas , Filogenia , Doenças das Plantas/microbiologia , Genômica , Xanthomonas/genética
3.
Appl Environ Microbiol ; 81(4): 1520-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527544

RESUMO

Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.


Assuntos
Capsicum/microbiologia , Doenças das Plantas/microbiologia , Recombinação Genética , Solanum lycopersicum/microbiologia , Xanthomonas/genética , Xanthomonas/isolamento & purificação , África , América , Ásia , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Nova Zelândia , Filogenia , Xanthomonas/classificação , Xanthomonas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA