Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Methods ; 366: 109403, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752813

RESUMO

BACKGROUND: Longitudinal access to cerebrospinal fluid (CSF) is useful for biomarker discovery in neurological disorders or diseases affecting CSF composition. Here, we aim to test a new method for insertion of a permanent intrathecal catheter, facilitating longitudinal collection of CSF. NEW METHOD: We surgically placed a permanent intrathecal catheter into the cisterna magna of anesthetized neonatal piglets. The thecal sac was accessed at the L5-S1 spinal level and a radiopaque catheter was inserted under fluoroscopic x-ray guidance to position the tip at the cisterna magna. A titanium access port was connected to the catheter and anchored subcutaneously. Immediately after surgery, we confirmed CSF flow through the catheter and port via needle aspiration. Catheter patency over a two-month study period was determined through periodic CSF collection from the port. RESULTS: Frequent (up to 3 times weekly), longitudinal sampling of CSF was achievable in neonatal piglets up to 60 days after implantation. CSF was readily accessible through the port without major adverse events. Catheterized piglets demonstrated slower, but normal, weight gain compared to control piglets. Post-operative complications were managed with standard access precautions and medications. There were no complications involving the implanted hardware. COMPARISON WITH EXISTING METHOD(S): This method fills a critical gap in the existing methods for longitudinal CSF sampling through an implanted intrathecal catheter system in neonatal piglets. CONCLUSIONS: This novel method is both safe and effective for longitudinal CSF access in the domestic piglet. Catheter patency and access to CSF is maintained over multiple months without major adverse events.


Assuntos
Cateterismo , Cisterna Magna , Animais , Biomarcadores , Cateterismo/métodos , Catéteres , Líquido Cefalorraquidiano , Manejo de Espécimes , Suínos
2.
Gene Ther ; 29(9): 513-519, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34803165

RESUMO

Numerous pediatric neurogenetic diseases may be optimally treated by in utero gene therapy (IUGT); but advancing such treatments requires animal models that recapitulate developmental physiology relevant to humans. One disease that could benefit from IUGT is the autosomal recessive motor neuron disease spinal muscular atrophy (SMA). Current SMA gene-targeting therapeutics are more efficacious when delivered shortly after birth, however postnatal treatment is rarely curative in severely affected patients. IUGT may provide benefit for SMA patients. In previous studies, we developed a large animal porcine model of SMA using AAV9 to deliver a short hairpin RNA (shRNA) directed at porcine survival motor neuron gene (Smn) mRNA on postnatal day 5. Here, we aimed to model developmental features of SMA in fetal piglets and to demonstrate the feasibility of prenatal gene therapy by delivering AAV9-shSmn in utero. Saline (sham), AAV9-GFP, or AAV9-shSmn was injected under direct ultrasound guidance between gestational ages 77-110 days. We developed an ultrasound-guided technique to deliver virus under direct visualization to mimic the clinic setting. Saline injection was tolerated and resulted in viable, healthy piglets. Litter rejection occurred within seven days of AAV9 injection for all other rounds. Our real-world experience of in utero viral delivery followed by AAV9-related fetal rejection suggests that the domestic sow may not be a viable model system for preclinical in utero AAV9 gene therapy studies.


Assuntos
Dependovirus , Atrofia Muscular Espinal , Animais , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/veterinária , Gravidez , RNA Mensageiro , RNA Interferente Pequeno , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA