Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Leukemia ; 38(3): 491-501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38155245

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Camundongos , Animais , Fatores de Transcrição/genética , Timócitos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timo/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
2.
J Immunol ; 211(9): 1376-1384, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702745

RESUMO

IFN-γ-producing invariant NKT (iNKT)1 cells are lipid-reactive innate-like lymphocytes that are resident in the thymus and peripheral tissues where they protect against pathogenic infection. The thymic functions of iNKT1 cells are not fully elucidated, but subsets of thymic iNKT cells modulate CD8 T cell, dendritic cell, B cell, and thymic epithelial cell numbers or function. In this study, we show that a subset of murine thymic iNKT1 cells required TGF-ß-induced signals for their postselection development, to maintain hallmark TGF-ß-induced genes, and for expression of the adhesion receptors CD49a and CD103. However, the residency-associated receptor CD69 was not TGF-ß signaling-dependent. Recently described CD244+ c2 thymic iNKT1 cells, which produce IFN-γ without exogenous stimulation and have NK-like characteristics, reside in this TGF-ß-responsive population. Liver and spleen iNKT1 cells do not share this TGF-ß gene signature, but nonetheless TGF-ß impacts liver iNKT1 cell phenotype and function. Our findings provide insight into the heterogeneity of mechanisms guiding iNKT1 cell development in different tissues and suggest a close association between a subset of iNKT1 cells and TGF-ß-producing cells in the thymus that support their development.


Assuntos
Células T Matadoras Naturais , Fator de Crescimento Transformador beta , Animais , Camundongos , Linfócitos T CD8-Positivos , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Timo , Fator de Crescimento Transformador beta/metabolismo
3.
Immunity ; 56(7): 1451-1467.e12, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37263273

RESUMO

Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.


Assuntos
Hipersensibilidade , Linfócitos T , Humanos , Camundongos , Animais , Diferenciação Celular/genética , Hematopoese , Inflamação/genética , Sequências Reguladoras de Ácido Nucleico , Hipersensibilidade/genética , Elementos Facilitadores Genéticos/genética
4.
Clin Cancer Res ; 29(16): 3151-3161, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37363966

RESUMO

PURPOSE: Relapsed T-acute lymphoblastic leukemia (T-ALL) has limited treatment options. We investigated mechanisms of resistance to BH3 mimetics in T-ALL to develop rational combination strategies. We also looked at the preclinical efficacy of NWP-0476, a novel BCL-2/BCL-xL inhibitor, as single agent and combination therapy in T-ALL. EXPERIMENTAL DESIGN: We used BH3 profiling as a predictive tool for BH3 mimetic response in T-ALL. Using isogenic control, venetoclax-resistant (ven-R) and NWP-0476-resistant (NWP-R) cells, phosphokinase array was performed to identify differentially regulated signaling pathways. RESULTS: Typical T-ALL cells had increased dependence on BCL-xL, whereas early T-precursor (ETP)-ALL cells had higher BCL-2 dependence for survival. BCL-2/BCL-xL dual inhibitors were effective against both subtypes of T-lineage ALL. A 71-protein human phosphokinase array showed increased LCK activity in ven-R cells, and increased ACK1 activity in ven-R and NWP-R cells. We hypothesized that pre-TCR and ACK1 signaling pathways are drivers of resistance to BCL-2 and BCL-xL inhibition, respectively. First, we silenced LCK gene in T-ALL cell lines, which resulted in increased sensitivity to BCL-2 inhibition. Mechanistically, LCK activated NF-κB pathway and the expression of BCL-xL. Silencing ACK1 gene resulted in increased sensitivity to both BCL-2 and BCL-xL inhibitors. ACK1 signaling upregulated AKT pathway, which inhibited the pro-apoptotic function of BAD. In a T-ALL patient-derived xenograft model, combination of NWP-0476 and dasatinib demonstrated synergy without major organ toxicity. CONCLUSIONS: LCK and ACK1 signaling pathways are critical regulators of BH3 mimetic resistance in T-ALL. Combination of BH3 mimetics with tyrosine kinase inhibitors might be effective against relapsed T-ALL.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
5.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163059

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.

7.
J Immunol ; 209(2): 208-216, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35821098

RESUMO

Innate-like lymphocytes are a subset of lymphoid cells that function as a first line of defense against microbial infection. These cells are activated by proinflammatory cytokines or broadly expressed receptors and are able to rapidly perform their effector functions owing to a uniquely primed chromatin state that is acquired as a part of their developmental program. These cells function in many organs to protect against disease, but they release cytokines and cytotoxic mediators that can also lead to severe tissue pathologies. Therefore, harnessing the capabilities of these cells for therapeutic interventions will require a deep understanding of how these cells develop and regulate their effector functions. In this review we discuss recent advances in the identification of the transcription factors and the genomic regions that guide the development and function of invariant NKT cells and we highlight related mechanisms in other innate-like lymphocytes.


Assuntos
Imunidade Inata , Células T Matadoras Naturais , Diferenciação Celular/genética , Citocinas , Genômica
8.
Front Immunol ; 13: 885144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514954

RESUMO

T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fatores de Transcrição , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo
9.
Front Immunol ; 13: 845488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371057

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição TCF/genética , Fatores de Transcrição/metabolismo
10.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857289

RESUMO

Gaining a mechanistic understanding of the expansion and maturation program of natural killer (NK) cells will provide opportunities for harnessing their inflammation-inducing and oncolytic capacity for therapeutic purposes. Here, we demonstrated that ID2, a transcriptional regulatory protein constitutively expressed in NK cells, supports NK cell effector maturation by controlling the amplitude and temporal dynamics of the transcription factor TCF1. TCF1 promotes immature NK cell expansion and restrains differentiation. The increased TCF1 expression in ID2-deficient NK cells arrests their maturation and alters cell surface receptor expression. Moreover, TCF1 limits NK cell functions, such as cytokine-induced IFN-γ production and the ability to clear metastatic melanoma in ID2-deficient NK cells. Our data demonstrate that ID2 sets a threshold for TCF1 during NK cell development, thus controlling the balance of immature and terminally differentiated cells that support future NK cell responses.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células Matadoras Naturais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Expressão Gênica/fisiologia , Interferon gama/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/fisiologia
11.
Immunity ; 53(6): 1123-1125, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326760

RESUMO

EBF1 is a pioneer transcription factor involved in B lymphocyte specification. In this issue of Immunity, Wang et al. localize EBF1's pioneering activity to a prion-like domain that mediates recruitment of the nucleosome remodeler Brg1 and FUS-assisted liquid-liquid phase separation.


Assuntos
Cromatina , Príons , Linfócitos B/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Blood Cancer Discov ; 1(2): 178-197, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32924017

RESUMO

Notch activation is highly prevalent among cancers, in particular T-cell acute lymphoblastic leukemia (T-ALL). However, the use of pan-Notch inhibitors to treat cancers has been hampered by adverse effects, particularly intestinal toxicities. To circumvent this barrier in T-ALL, we aimed to inhibit ETS1, a developmentally important T-cell transcription factor previously shown to co-bind Notch response elements. Using complementary genetic approaches in mouse models, we show that ablation of Ets1 leads to strong Notch-mediated suppressive effects on T-cell development and leukemogenesis, but milder intestinal effects than pan-Notch inhibitors. Mechanistically, genome-wide chromatin profiling studies demonstrate that Ets1 inactivation impairs recruitment of multiple Notch-associated factors and Notch-dependent activation of transcriptional elements controlling major Notch-driven oncogenic effector pathways. These results uncover previously unrecognized hierarchical heterogeneity of Notch-controlled genes and points to Ets1-mediated enucleation of Notch-Rbpj transcriptional complexes as a target for developing specific anti-Notch therapies in T-ALL that circumvent the barriers of pan-Notch inhibition.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Proto-Oncogênica c-ets-1 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Leucemia de Células T/tratamento farmacológico , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteína Proto-Oncogênica c-ets-1/antagonistas & inibidores , Receptor Notch1/antagonistas & inibidores , Transdução de Sinais/fisiologia
13.
Nat Immunol ; 21(9): 1058-1069, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719520

RESUMO

Innate T cells, including invariant natural killer T (iNKT) and mucosal-associated innate T (MAIT) cells, are a heterogeneous T lymphocyte population with effector properties preprogrammed during their thymic differentiation. How this program is initiated is currently unclear. Here, we show that the transcription factor BCL-6 was transiently expressed in iNKT cells upon exit from positive selection and was required for their proper development beyond stage 0. Notably, development of MAIT cells was also impaired in the absence of Bcl6. BCL-6-deficient iNKT cells had reduced expression of genes that were associated with the innate T cell lineage, including Zbtb16, which encodes PLZF, and PLZF-targeted genes. BCL-6 contributed to a chromatin accessibility landscape that was permissive for the expression of development-related genes and inhibitory for genes associated with naive T cell programs. Our results revealed new functions for BCL-6 and illuminated how this transcription factor controls early iNKT cell development.


Assuntos
Cromatina/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética
14.
Adv Immunol ; 146: 1-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327150

RESUMO

Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes. Despite the functional relationship between NK cells and CD8 T cells, the mechanisms controlling their specification, differentiation and maturation are distinct, with NK cells emerging from multipotent lymphoid progenitors in the bone marrow under the control of a unique transcriptional program. Over the past few years, substantial progress has been made in understanding the developmental pathways and the factors involved in generating mature and functional NK cells. NK cells have immense therapeutic potential and understanding how to acquire large numbers of functional cells and how to endow them with potent activity to control hematopoietic and non-hematopoietic malignancies and autoimmunity is a major clinical goal. In this review, we examine basic aspects of conventional NK cell development in mice and humans and discuss multiple transcription factors that are known to guide the development of these cells.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Imunidade Inata , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Animais , Citocinas/metabolismo , Humanos , Camundongos , Fatores de Transcrição/metabolismo
15.
J Immunol ; 204(7): 1760-1769, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094206

RESUMO

Lymphocyte lineage specification and commitment requires the activation of lineage-specific genes and repression of alternative lineage genes, respectively. The mechanisms governing alternative lineage gene repression and commitment in lymphocytes are largely unknown. In this study, we demonstrate that Ezh2, which represses gene expression through methylation of histone 3 lysine 27, was essential for repression of numerous genes, including genes encoding innate lymphocyte transcription factors, specifically in murine B lymphocyte progenitors, but these cells maintained their B lymphocyte identity. However, adult Ezh2-deficient B lymphocytes expressed Lin28b, which encodes an RNA-binding protein associated with fetal hematopoietic gene expression programs, and these cells acquired a fetal B-1 lymphocyte phenotype in vitro and in vivo. Therefore, Ezh2 coordinates the repression of multiple gene programs in B lymphocytes and maintains the adult B-2 cell fate.


Assuntos
Linfócitos B/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Imunidade Inata/imunologia , Células Precursoras de Linfócitos B/imunologia , Transcrição Gênica/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Expressão Gênica/imunologia , Histonas/imunologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/imunologia , Fatores de Transcrição/imunologia
16.
Cell Rep ; 29(5): 1203-1220.e7, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665634

RESUMO

The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription. The chromatin-organizing actions of Batf are largely dependent on Ets1, which appears to be indispensable for the Batf-dependent recruitment of Ctcf. Moreover, most of the Batf-dependent sites to which Ctcf is recruited lie outside of activating protein-1-interferon regulatory factor (Ap-1-Irf) composite elements (AICEs), indicating that direct involvement of Batf-Irf complexes is not required. These results identify a cooperative role for Batf, Ets1, and Ctcf in chromatin reorganization that underpins the transcriptional programming of effector T cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator de Ligação a CCCTC/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cromatina/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Genoma , Humanos , Fatores Reguladores de Interferon/metabolismo , Interleucinas/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Ligação Proteica , Regulação para Cima/genética
17.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406378

RESUMO

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Assuntos
Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Monócitos/citologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células-Tronco/citologia , Células Tumorais Cultivadas
18.
J Immunol ; 202(10): 2837-2842, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30962294

RESUMO

Lymphoid specification is the process by which hematopoietic stem cells (HSCs) and their progeny become restricted to differentiation through the lymphoid lineages. The basic helix-loop-helix transcription factors E2A and Lyl1 form a complex that promotes lymphoid specification. In this study, we demonstrate that Tal1, a Lyl1-related basic helix-loop-helix transcription factor that promotes T acute lymphoblastic leukemia and is required for HSC specification, erythropoiesis, and megakaryopoiesis, is a negative regulator of murine lymphoid specification. We demonstrate that Tal1 limits the expression of multiple E2A target genes in HSCs and controls the balance of myeloid versus T lymphocyte differentiation potential in lymphomyeloid-primed progenitors. Our data provide insight into the mechanisms controlling lymphocyte specification and may reveal a basis for the unique functions of Tal1 and Lyl1 in T acute lymphoblastic leukemia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Diferenciação Celular/imunologia , Células Progenitoras Linfoides/imunologia , Células Progenitoras Mieloides/imunologia , Proteínas de Neoplasias/imunologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética
19.
Sci Immunol ; 3(22)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703840

RESUMO

All innate lymphoid cells (ILCs) require the small helix-loop-helix transcription factor ID2, but the functions of ID2 are not well understood in these cells. We show that mature natural killer (NK) cells, the prototypic ILCs, developed in mice lacking ID2 but remained as precursor CD27+CD11b- cells that failed to differentiate into CD27-CD11b+ cytotoxic effectors. We show that ID2 limited chromatin accessibility at E protein binding sites near naïve T lymphocyte-associated genes including multiple chemokine receptors, cytokine receptors, and signaling molecules and altered the NK cell response to inflammatory cytokines. In the absence of ID2, CD27+CD11b- NK cells expressed ID3, a helix-loop-helix protein associated with naïve T cells, and they transitioned from a CD8 memory precursor-like to a naïve-like chromatin accessibility state. We demonstrate that ID3 was required for the development of ID2-deficient NK cells, indicating that completely unfettered E protein function is incompatible with NK cell development. These data solidify the roles of ID2 and ID3 as mediators of effector and naïve gene programs, respectively, and revealed a critical role for ID2 in promoting a chromatin state and transcriptional program in CD27+CD11b- NK cells that supports cytotoxic effector differentiation and cytokine responses.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Diferenciação Celular/imunologia , Proteína 2 Inibidora de Diferenciação/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Cromatina/imunologia , Cromatina/metabolismo , Regulação da Expressão Gênica/imunologia , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismo
20.
Curr Opin Immunol ; 51: 39-45, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29452898

RESUMO

Invariant Natural Killer T (iNKT) cells are a heterogeneous innate T cell population that recognizes lipid antigens. Despite the monospecific nature of their T cell receptor, iNKT cells differentiate into stable sublineages during thymic development, before foreign antigen encounter. How iNKT cell subsets acquire and maintain their functional programs is a central question in innate lymphocyte biology. Global transcriptional and epigenetic profiling of iNKT subsets has provided insights into the internal wiring of these subsets that defines their identity. Comparison of the iNKT transcriptional programs with those of other adaptive and innate lymphocyte lineages revealed common core regulatory circuits that may dictate effector functions. In this review, we summarize recent advances on the molecular mechanisms involved in iNKT cell development.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/imunologia , Epigênese Genética , Imunidade Inata , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfopoese , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA