Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38544080

RESUMO

Commercially available wearable devices (wearables) show promise for continuous physiological monitoring. Previous works have demonstrated that wearables can be used to detect the onset of acute infectious diseases, particularly those characterized by fever. We aimed to evaluate whether these devices could be used for the more general task of syndromic surveillance. We obtained wearable device data (Oura Ring) from 63,153 participants. We constructed a dataset using participants' wearable device data and participants' responses to daily online questionnaires. We included days from the participants if they (1) completed the questionnaire, (2) reported not experiencing fever and reported a self-collected body temperature below 38 °C (negative class), or reported experiencing fever and reported a self-collected body temperature at or above 38 °C (positive class), and (3) wore the wearable device the nights before and after that day. We used wearable device data (i.e., skin temperature, heart rate, and sleep) from the nights before and after participants' fever day to train a tree-based classifier to detect self-reported fevers. We evaluated the performance of our model using a five-fold cross-validation scheme. Sixteen thousand, seven hundred, and ninety-four participants provided at least one valid ground truth day; there were a total of 724 fever days (positive class examples) from 463 participants and 342,430 non-fever days (negative class examples) from 16,687 participants. Our model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.85 and an average precision (AP) of 0.25. At a sensitivity of 0.50, our calibrated model had a false positive rate of 0.8%. Our results suggest that it might be possible to leverage data from these devices at a public health level for live fever surveillance. Implementing these models could increase our ability to detect disease prevalence and spread in real-time during infectious disease outbreaks.


Assuntos
Vigilância de Evento Sentinela , Dispositivos Eletrônicos Vestíveis , Humanos , Dados de Saúde Coletados Rotineiramente , Monitorização Fisiológica , Febre/diagnóstico , Autorrelato
2.
PLoS One ; 18(7): e0288496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459328

RESUMO

The All of Us (AoU) Research Program is making available one of the largest and most diverse collections of health data in the US to researchers. Using the All of Us database, we evaluated family and personal histories of five common types of cancer in 89,453 individuals, comparing these data to 24,305 participants from the 2015 National Health Interview Survey (NHIS). Comparing datasets, we found similar family cancer history (33%) rates, but higher personal cancer history in the AoU dataset (9.2% in AoU vs. 5.11% in NHIS), Methodological (e.g. survey-versus telephone-based data collection) and demographic variability may explain these between-data differences, but more research is needed.


Assuntos
Neoplasias , Saúde da População , Humanos , Medicina de Precisão , Neoplasias/genética , Neoplasias/terapia , Inquéritos e Questionários , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA