Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(1): 601-614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753835

RESUMO

INTRODUCTION: Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS: AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS: In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION: These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Modelos Animais de Doenças , Plasticidade Neuronal/genética , Sinapses/metabolismo , Amiloide/metabolismo , Dendritos/metabolismo
2.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162819

RESUMO

Common features of Alzheimer's disease (AD) include amyloid pathology, microglia activation and synaptic dysfunction, however, the causal relationships amongst them remains unclear. Further, human data suggest susceptibility and resilience to AD neuropathology is controlled by genetic context, a factor underexplored in mouse models. To this end, we leveraged viral strategies to label an AD-vulnerable neuronal circuit in CA1 dendrites projecting to the frontal cortex in genetically diverse C57BL/6J (B6) and PWK/PhJ (PWK) APP/PS1 mouse strains and used PLX5622 to non-invasively deplete brain microglia. Reconstructions of labeled neurons revealed microglia-dependent changes in dendritic spine density and morphology in B6 wild-type (WT) and APP/PS1 yet a marked stability of spines across PWK mice. We further showed that synaptic changes depend on direct microglia-dendrite interactions in B6. APP/PS1 but not PWK. APP/PS1 mice. Collectively, these results demonstrate that microglia-dependent synaptic alterations in a specific AD-vulnerable projection pathway are differentially controlled by genetic context.

3.
Alzheimers Dement (N Y) ; 8(1): e12329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016830

RESUMO

Introduction: Hyperexcitability and epileptiform activity are commonplace in Alzheimer's disease (AD) patients and associated with impaired cognitive function. The anti-seizure drug levetiracetam (LEV) is currently being evaluated in clinical trials for ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of our studies was to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship with LEV in an amyloidogenic mouse model of AD to enable predictive preclinical to clinical translation, using the rigorous preclinical testing pipeline of the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease Preclinical Testing Core. Methods: A multi-tier approach was applied that included quality assurance and quality control of the active pharmaceutical ingredient, PK/PD modeling, positron emission tomography/magnetic resonance imaging (PET/MRI), functional outcomes, and transcriptomics. 5XFAD mice were treated chronically with LEV for 3 months at doses in line with those allometrically scaled to the clinical dose range. Results: Pharmacokinetics of LEV demonstrated sex differences in Cmax, AUC0-∞, and CL/F, and a dose dependence in AUC0-∞. After chronic dosing at 10, 30, 56 mg/kg, PET/MRI tracer 18F-AV45, and 18F-fluorodeoxyglucose (18F-FDG) showed specific regional differences with treatment. LEV did not significantly improve cognitive outcomes. Transcriptomics performed by nanoString demonstrated drug- and dose-related changes in gene expression relevant to human brain regions and pathways congruent with changes in 18F-FDG uptake. Discussion: This study represents the first report of PK/PD assessment of LEV in 5XFAD mice. Overall, these results highlighted non-linear kinetics based on dose and sex. Plasma concentrations of the 10 mg/kg dose in 5XFAD overlapped with human plasma concentrations used for studies of mild cognitive impairment, while the 30 and 56 mg/kg doses were reflective of doses used to treat seizure activity. Post-treatment gene expression analysis demonstrated LEV dose-related changes in immune function and neuronal-signaling pathways relevant to human AD, and aligned with regional 18F-FDG uptake. Overall, this study highlights the importance of PK/PD relationships in preclinical studies to inform clinical study design. Highlights: Significant sex differences in pharmacokinetics of levetiracetam were observed in 5XFAD mice.Plasma concentrations of 10 mg/kg levetiracetam dose in 5XFAD overlapped with human plasma concentration used in the clinic.Drug- and dose-related differences in gene expression relevant to human brain regions and pathways were also similar to brain region-specific changes in 18F-fluorodeoxyglucose uptake.

4.
Alzheimers Dement (N Y) ; 8(1): e12317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846156

RESUMO

Introduction: Alzheimer's disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer's Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aß) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aß40 and Aß42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aß levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD.

5.
J Proteome Res ; 20(3): 1733-1743, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33534581

RESUMO

Extracellular vesicles (EVs) are secreted by any neural cells in the central nervous system for molecular clearance, cellular communications, and disease spread in multiple neurodegenerative diseases, including Alzheimer's disease (AD), although their exact molecular mechanism is poorly understood. We hypothesize that high-resolution proteomic profiling of EVs separated from animal models of AD would determine the composition of EV contents and their cellular origin. Here, we examined recently developed transgenic mice (CAST.APP/PS1), which express familial AD-linked mutations of amyloid precursor protein (APP) and presenilin-1 (PS1) in the CAST/EiJ mouse strain and develop hippocampal neurodegeneration. Quantitative proteomics analysis of EVs separated from CAST.APP/PS1 and age-matched control mice by tandem mass tag-mass spectrometry identified a total of 3444 unique proteins, which are enriched in neuron-, astrocyte-, oligodendrocyte-, and microglia-specific molecules. CAST.APP/PS1-derived EVs show significant enrichment of Psen1, APP, and Itgax and reduction of Wdr61, Pmpca, Aldh1a2, Calu, Anp32b, Actn4, and Ndufv2 compared to WT-derived EVs, suggesting the involvement of Aß-processing complex and disease-associated/neurodegenerative microglia (DAM/MGnD) in EV secretion. In addition, Itgax and Apoe, DAM/MGnD markers, in EVs show a positive correlation with Itgax and Apoe mRNA expression from brain tissue in CAST.APP/PS1 mice. These datasets indicate the significant contribution of Aß plaque and neurodegeneration-induced DAM/MGnD microglia for EV secretion in CAST.APP/PS1 mice and shed light on understanding AD pathogenesis.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Proteínas do Tecido Nervoso , Proteínas Nucleares , Proteômica
6.
Cell Rep ; 34(6): 108739, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567283

RESUMO

Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer's disease (AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance of microglial subtypes or states, including numbers of previously identified disease-associated and interferon-responding microglia, across the strains. For each subtype, significant differences in the expression of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately targeted therapeutics for AD and other neurological diseases.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , RNA-Seq , Animais , Modelos Animais de Doenças , Variação Genética , Estudo de Associação Genômica Ampla , Camundongos , Especificidade da Espécie
7.
Invest Ophthalmol Vis Sci ; 60(10): 3283-3296, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369031

RESUMO

Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results: URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions: Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma.


Assuntos
Axônios/patologia , Glaucoma/genética , Haploinsuficiência/genética , Proteínas de Homeodomínio/genética , Degeneração Neural/genética , Disco Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Glaucoma/patologia , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Microscopia com Lâmpada de Fenda
8.
PLoS Genet ; 15(5): e1008155, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150388

RESUMO

Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD.


Assuntos
Doença de Alzheimer/genética , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Selvagens/genética , Encéfalo/metabolismo , Variação Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide , Presenilina-1/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA