Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(2): 344-359, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33482061

RESUMO

Antibodies possess properties that make them valuable as therapeutics, diagnostics, and basic research tools. However, antibody chemical reactivity and covalent antigen binding are constrained, or even prevented, by the narrow range of chemistries encoded in canonical amino acids. In this work, we investigate strategies for leveraging an expanded range of chemical functionality using yeast displayed antibodies containing noncanonical amino acids (ncAAs) in or near antibody complementarity determining regions (CDRs). To enable systematic characterization of the effects of ncAA incorporation on antibody function, we first investigated whether diversification of a single antibody loop would support the isolation of binding clones against immunoglobulins from three species. We constructed and screened a billion-member library containing canonical amino acid diversity and loop length diversity only within the third complementarity determining region of the heavy chain (CDR-H3). Isolated clones exhibited moderate affinities (double- to triple-digit nanomolar affinities) and, in several cases, single-species specificity, confirming that antibody specificity can be mediated by a single CDR. This constrained diversity enabled the utilization of additional CDRs for the installation of chemically reactive and photo-cross-linkable ncAAs. Binding studies of ncAA-substituted antibodies revealed that ncAA incorporation is reasonably well tolerated, with observed changes in affinity occurring as a function of ncAA side chain identity, substitution site, and the ncAA incorporation machinery used. Multiple azide-containing ncAAs supported copper-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC) without the abrogation of binding function. Similarly, several alkyne substitutions facilitated CuAAC without the apparent disruption of binding. Finally, antibodies substituted with a photo-cross-linkable ncAA were evaluated for ultraviolet-mediated cross-linking on the yeast surface. Competition-based assays revealed position-dependent covalent linkages, strongly suggesting successful cross-linking. Key findings regarding CuAAC reactions and photo-cross-linking on the yeast surface were confirmed using soluble forms of ncAA-substituted clones. The consistency of findings on the yeast surface and in solution suggest that chemical diversification can be incorporated into yeast display screening approaches. Taken together, our results highlight the power of integrating the use of yeast display and ncAAs in search of proteins with "chemically augmented" binding functions. This includes strategies for systematically introducing small molecule functionality within binding protein structures and evaluating protein-based covalent target binding. The efficient preparation and chemical diversification of antibodies on the yeast surface open up new possibilities for discovering "drug-like" protein leads in high throughput.


Assuntos
Aminoácidos/química , Regiões Determinantes de Complementaridade/química , Imunoglobulina G/química , Alcinos/química , Alcinos/efeitos da radiação , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Especificidade de Anticorpos , Azidas/química , Azidas/efeitos da radiação , Bovinos , Química Click , Regiões Determinantes de Complementaridade/genética , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Reação de Cicloadição , Equidae , Imunoglobulina G/genética , Biblioteca de Peptídeos , Engenharia de Proteínas , Coelhos , Raios Ultravioleta
2.
ACS Synth Biol ; 7(9): 2256-2269, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30139255

RESUMO

Engineering protein translation machinery to incorporate noncanonical amino acids (ncAAs) into proteins has advanced applications ranging from proteomics to single-molecule studies. As applications of ncAAs emerge, efficient ncAA incorporation is crucial to exploiting unique chemistries. We have established a quantitative reporter platform to evaluate ncAA incorporation in response to the TAG (amber) codon in yeast. This yeast display-based reporter utilizes an antibody fragment containing an amber codon at which a ncAA is incorporated when the appropriate orthogonal translation system (OTS) is present. Epitope tags at both termini allow for flow cytometry-based end point readouts of OTS efficiency and fidelity. Using this reporter, we evaluated several factors that influence amber suppression, including the amber codon position and different aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. Interestingly, previously described aaRSs that evolved from different parent enzymes to incorporate O-methyl-l-tyrosine exhibit vastly different behavior. Escherichia coli leucyl-tRNA synthetase variants demonstrated efficient incorporation of a range of ncAAs, and we discovered unreported activities of several variants. Compared to a plate reader-based reporter, our assay yields more precise bulk-level measurements while also supporting single-cell readouts compatible with cell sorting. This platform is expected to allow quantitative elucidation of principles dictating efficient stop codon suppression and evolution of next-generation stop codon suppression systems to further enhance genetic code manipulation in eukaryotes. These efforts will improve our understanding of how the genetic code can be further evolved while expanding the range of chemical diversity available in proteins for applications ranging from fundamental epigenetics studies to engineering new classes of therapeutics.


Assuntos
Aminoácidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon de Terminação , Escherichia coli/enzimologia , Genes Reporter , Plasmídeos/genética , Plasmídeos/metabolismo , Engenharia de Proteínas , RNA de Transferência/metabolismo
3.
Protein Eng Des Sel ; 29(11): 485-494, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27515702

RESUMO

The combination of protein display technologies and noncanonical amino acids (ncAAs) offers unprecedented opportunities for the high throughput discovery and characterization of molecules suitable for addressing fundamental and applied problems in biological systems. Here we demonstrate that ncAA-compatible yeast display facilitates evaluations of conjugation chemistry and stability that would be challenging or impossible to perform with existing mRNA, phage, or E. coli platforms. Our approach enables site-specific introduction of ncAAs into displayed proteins, robust modification at azide-containing residues, and quantitative evaluation of conjugates directly on the yeast surface. Moreover, screening allows for the selective enrichment of chemically modified constructs while maintaining a genotype-phenotype linkage with encoded azide functionalities. Thus, this platform is suitable for the high throughput characterization and screening of libraries of chemically modified polypeptides for therapeutic lead discovery and other biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA