Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ACS Nano ; 17(19): 19313-19322, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738305

RESUMO

The terahertz (THz) frequency range is key to studying collective excitations in many crystals and organic molecules. However, due to the large wavelength of THz radiation, the local probing of these excitations in smaller crystalline structures or few-molecule arrangements requires sophisticated methods to confine THz light down to the nanometer length scale, as well as to manipulate such a confined radiation. For this purpose, in recent years, taking advantage of hyperbolic phonon polaritons (HPhPs) in highly anisotropic van der Waals (vdW) materials has emerged as a promising approach, offering a multitude of manipulation options, such as control over the wavefront shape and propagation direction. Here, we demonstrate the THz application of twist-angle-induced HPhP manipulation, designing the propagation of confined THz radiation between 8.39 and 8.98 THz in the vdW material α-molybdenum trioxide (α-MoO3), hence extending twistoptics to this intriguing frequency range. Our images, recorded by near-field optical microscopy, show the frequency- and twist-angle-dependent changes between hyperbolic and elliptic polariton propagation, revealing a polaritonic transition at THz frequencies. As a result, we are able to allocate canalization (highly collimated propagation) of confined THz radiation by carefully adjusting these two parameters, i.e. frequency and twist angle. Specifically, we report polariton canalization in α-MoO3 at 8.67 THz for a twist angle of 50°. Our results demonstrate the precise control and manipulation of confined collective excitations at THz frequencies, particularly offering possibilities for nanophotonic applications.

2.
Nat Commun ; 14(1): 5240, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640711

RESUMO

Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3 has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal ß-Ga2O3 (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

3.
Nano Lett ; 23(9): 3913-3920, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126430

RESUMO

Graphene nano-optics at terahertz (THz) frequencies (ν) is theoretically anticipated to feature extraordinary effects. However, interrogating such phenomena is nontrivial, since the atomically thin graphene dimensionally mismatches the THz radiation wavelength reaching hundreds of micrometers. Greater challenges happen in the THz gap (0.1-10 THz) wherein light sources are scarce. To surpass these barriers, we use a nanoscope illuminated by a highly brilliant and tunable free-electron laser to image the graphene nano-optical response from 1.5 to 6.0 THz. For ν < 2 THz, we observe a metal-like behavior of graphene, which screens optical fields akin to noble metals, since this excitation range approaches its charge relaxation frequency. At 3.8 THz, plasmonic resonances cause a field-enhancement effect (FEE) that improves the graphene imaging power. Moreover, we show that the metallic behavior and the FEE are tunable upon electrical doping, thus providing further control of these graphene nano-optical properties in the THz gap.

4.
ACS Nano ; 16(12): 20174-20185, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36446407

RESUMO

Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.

5.
Nano Lett ; 21(21): 9012-9020, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665620

RESUMO

Chalcogenide phase change materials reversibly switch between non-volatile states with vastly different optical properties, enabling novel active nanophotonic devices. However, a fundamental understanding of their laser-switching behavior is lacking and the resulting local optical properties are unclear at the nanoscale. Here, we combine infrared scattering-type scanning near-field optical microscopy (SNOM) and Kelvin probe force microscopy (KPFM) to investigate four states of laser-switched Ge3Sb2Te6 (as-deposited amorphous, crystallized, reamorphized, and recrystallized) with nanometer lateral resolution. We find SNOM to be especially sensitive to differences between crystalline and amorphous states, while KPFM has higher sensitivity to changes introduced by melt-quenching. Using illumination from a free-electron laser, we use the higher sensitivity to free charge carriers of far-infrared (THz) SNOM compared to mid-infrared SNOM and find evidence that the local conductivity of crystalline states depends on the switching process. This insight into the local switching of optical properties is essential for developing active nanophotonic devices.

6.
Nat Commun ; 12(1): 2649, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976184

RESUMO

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

7.
Nat Commun ; 12(1): 1995, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790286

RESUMO

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

8.
Adv Mater ; 33(2): e2005777, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270287

RESUMO

Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation confinement is conventionally achieved with specially designed metallic structures-such as antennas or nanoslits-with large footprints due to the rather long wavelengths of THz radiation. In this context, phonon polaritons-light coupled to lattice vibrations-in van der Waals (vdW) crystals have emerged as a promising solution for controlling light beyond the diffraction limit, as they feature extreme field confinements and low optical losses. However, experimental demonstration of nanoscale-confined phonon polaritons at THz frequencies has so far remained elusive. Here, it is provided by employing scattering-type scanning near-field optical microscopy combined with a free-electron laser to reveal a range of low-loss polaritonic excitations at frequencies from 8 to 12 THz in the vdW semiconductor α-MoO3 . In this study, THz polaritons are visualized with: i) in-plane hyperbolic dispersion, ii) extreme nanoscale field confinement (below λo  /75), and iii) long polariton lifetimes, with a lower limit of >2 ps.

9.
Opt Express ; 28(22): 32316-32330, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114920

RESUMO

Local electric fields play the key role in near-field optical examinations and are especially appealing when exploring heterogeneous or even anisotropic nano-systems. Scattering-type near-field optical microscopy (s-SNOM) is the most commonly used method applied to explore and quantify such confined electric fields at the nanometer length scale: while most works so far did focus on analyzing the z-component oriented perpendicular to the sample surface under p-polarized tip/sample illumination only, recent experimental efforts in s-SNOM report that material resonant excitation might equally allow to probe in-plane electric field components. We thus explore this local vector-field behavior for a simple particle-tip/substrate system by comparing our parametric simulations based on finite element modelling at mid-IR wavelengths, to the standard analytical tip-dipole model. Notably, we analyze all the 4 different combinations for resonant and non-resonant tip and/or sample excitation. Besides the 3-dimensional field confinement under the particle tip present for all scenarios, it is particularly the resonant sample excitations that enable extremely strong field enhancements associated with vector fields pointing along all cartesian coordinates, even without breaking the tip/sample symmetry! In fact, in-plane (s-) resonant sample excitation exceeds the commonly-used p-polarized illumination on non-resonant samples by more than 6 orders of magnitude. Moreover, a variety of different spatial field distributions is found both at and within the sample surface, ranging from electric fields that are oriented strictly perpendicular to the sample surface, to fields that spatially rotate into different directions. Our approach shows that accessing the full vector fields in order to quantify all tensorial properties in nanoscale and modern-type materials lies well within the possibilities and scope of today's s-SNOM technique.

10.
Light Sci Appl ; 9: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549977

RESUMO

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25-70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 µm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5-7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted 1 4 power law.

11.
Nanotechnology ; 30(8): 084003, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523880

RESUMO

We report a strong shift of the plasma resonance in highly-doped GaAs/InGaAs core/shell nanowires (NWs) for intense infrared excitation observed by scattering-type scanning near-field infrared microscopy. The studied NWs show a sharp plasma resonance at a photon energy of about 125 meV in the case of continuous wave excitation by a CO2 laser. Probing the same NWs with the pulsed free-electron laser with peak electric field strengths up to several 10 kV cm-1 reveals a power-dependent redshift to about 95 meV and broadening of the plasmonic resonance. We assign this effect to a substantial heating of the electrons in the conduction band and subsequent increase of the effective mass in the nonparabolic Γ-valley.

12.
Nanoscale ; 10(37): 18074-18079, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30230501

RESUMO

We optically investigate the local-scale ferroelectric domain structure of tetragonal, orthorhombic, and rhombohedral barium titanate (BTO) single crystals using scattering-type scanning near-field infrared (IR) optical microscopy (s-SNIM) at temperatures down to 150 K. Thanks to the precisely tunable narrow-band free-electron laser FELBE, we are able to explore the spectral fingerprints and IR resonances of these three phases and their domain orientations in the optical IR near-field. More clearly, every structural phase is analyzed with respect to its near-field resonances close to a wavelength of 17 µm when exploring the (111)-oriented BTO sample surface. Furthermore, near-field imaging at these resonances is performed, that clearly allows for the unambiguous optical identification of different domain orientations. Since our s-SNIM is based on a non-contact scanning force microscope, our s-SNIM findings are backed up by sample-topography and piezoresponse force microscopy (PFM) imaging, providing complementary information in an excellent match to the s-SNIM results.

13.
Rev Sci Instrum ; 89(3): 033702, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604801

RESUMO

We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

14.
Sci Rep ; 7: 44663, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294193

RESUMO

GaV4S8 is a multiferroic semiconductor hosting Néel-type magnetic skyrmions dressed with electric polarization. At Ts = 42 K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts, ferroelectric domains are formed with the electric polarization pointing along any of the four 〈111〉 axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the Néel-type skyrmion lattice emerging below TC = 13 K, the characteristics of polar domains in GaV4S8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4S8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 µm. Since the magnetic pattern, imaged by atomic force microscopy using a magnetically coated tip, abruptly changes at the domain boundaries, we expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manipulation of Néel-type skyrmions.

15.
Nano Lett ; 15(2): 1057-61, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584806

RESUMO

We demonstrate a semiconductor based broadband near-field superlens in the mid-infrared regime. Here, the Drude response of a highly doped n-GaAs layer induces a resonant enhancement of evanescent waves accompanied by a significantly improved spatial resolution at radiation wavelengths around λ = 20 µm, adjustable by changing the doping concentration. In our experiments, gold stripes below the GaAs superlens are imaged with a λ/6 subwavelength resolution by an apertureless near-field optical microscope utilizing infrared radiation from a free-electron laser. The resonant behavior of the observed superlensing effect is in excellent agreement with simulations based on the Drude-Lorentz model. Our results demonstrate a rather simple superlens implementation for infrared nanospectroscopy.

16.
Opt Express ; 19(6): 5156-62, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445151

RESUMO

The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

17.
Opt Express ; 18(25): 26206-13, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164970

RESUMO

We use a combination of a scattering-type near-field infrared microscope with a free-electron laser as an intense, tunable radiation source to spatially and spectrally resolve buried doped layers in silicon. To this end, boron implanted stripes in silicon are raster scanned at different wavelengths in the range from 10 to 14 µm. An analysis based on a simple Drude model for the dielectric function of the sample yields quantitatively correct values for the concentration of the activated carriers. In a control experiment at the fixed wavelength of 10.6 µm, interferometric near-field signals are recorded. The phase information gained in this experiment is fully consistent with the carrier concentration obtained in the spectrally resolved experiments.


Assuntos
Algoritmos , Silício/química , Espectrofotometria Infravermelho/métodos , Íons , Teste de Materiais/métodos , Eletricidade Estática
18.
Opt Express ; 16(16): 12302-12, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18679508

RESUMO

We report on the implementation of metal nanoparticles as probes for scattering and apertureless near-field optical investigations in the mid-infrared (mid-IR) spectral regime. At these wavelengths, an efficient electric-field confinement is necessary and achieved here through a gold metal nanoparticle of 80 nm in diameter (Au80-MNP) acting as the optical antenna. The Au80-MNP is attached to a standard AFM cantilever used as the spatial manipulator. When approached to a sample surface while being illuminated with an infrared beam, the Au80-MNP produces a considerably improved spatial confinement of the electric field compared to an ordinary scattering AFM tip. We demonstrate here the confinement normal to the sample surface by making use of a sample-induced phonon polariton resonance in a ferroelectric lithium niobate sample. Our experimental findings are in very good agreement with the quasistatic dipole model and show improved optical resolution via well-selected antenna particles.


Assuntos
Desenho Assistido por Computador , Ouro/química , Aumento da Imagem/instrumentação , Microscopia de Força Atômica/instrumentação , Modelos Teóricos , Nanopartículas/química , Espectrofotometria Infravermelho/instrumentação , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Microscopia de Força Atômica/métodos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA