Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 14(1): 4301, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383687

RESUMO

Essential tremor (ET) amplitude is modulated by visual feedback during target driven movements and in a grip force task. It has not been examined yet whether visual feedback exclusively modulates target force tremor amplitude or if other afferent inputs like auditory sensation has a modulatory effect on tremor amplitude as well. Also, it is unknown whether the enhanced sensory feedback causes an increase of arousal in persons with ET (p-ET). We hypothesized that (1) amplitude of tremor is modulated by variation of auditory feedback in the absence of visual feedback in a force tremor paradigm; (2) increase of tremor amplitude coincides with pupillary size as a measure of arousal. 14 p-ET and 14 matched healthy controls (HC) conducted a computer-based experiment in which they were asked to match a target force on a force sensor using their thumb and index finger. The force-induced movement was fed back to the participant visually, auditory or by a combination of both. Results showed a comparable deviation from the target force (RMSE) during the experiment during all three sensory feedback modalities. The ANOVA revealed an effect of the high vs. low feedback condition on the tremor severity (Power 4-12 Hz) for the visual- and also for the auditory feedback condition in p-ET. Pupillometry showed a significantly increased pupil diameter during the auditory involved high feedback conditions compared to the low feedback conditions in p-ET. Our findings suggest that action tremor in ET is firstly modulated not only by visual feedback but also by auditory feedback in a comparable manner. Therefore, tremor modulation seems to be modality independent. Secondly, high feedback was associated with a significant pupil dilation, possibly mirroring an increased arousal/perceived effort.


Assuntos
Tremor Essencial , Tremor , Humanos , Retroalimentação Sensorial , Movimento , Dedos
2.
Brain Res ; 1822: 148646, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871674

RESUMO

Information processed in our sensory neocortical areas is transported to the hippocampus during memory encoding, and between hippocampus and neocortex during memory consolidation, and retrieval. Short bursts of high-frequency oscillations, so called sharp-wave-ripples, have been proposed as a potential mechanism for this information transfer: They can synchronize neural activity to support the formation of local neural networks to store information, and between distant cortical sites to act as a bridge to transfer information between sensory cortical areas and hippocampus. In neurodegenerative diseases like Alzheimer's Disease, different neuropathological processes impair normal neural functioning and neural synchronization as well as sharp-wave-ripples, which impairs consolidation and retrieval of information, and compromises memory. Here, we formulate a new hypothesis, that artificially inducing sharp-wave-ripples with noninvasive high-frequency visual stimulation could potentially support memory functioning, as well as target the neuropathological processes underlying neurodegenerative diseases. We also outline key challenges for empirical tests of the hypothesis.


Assuntos
Doença de Alzheimer , Consolidação da Memória , Neocórtex , Humanos , Hipocampo/fisiologia , Neocórtex/fisiologia , Lobo Parietal , Consolidação da Memória/fisiologia
3.
BMC Neurosci ; 24(1): 29, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138236

RESUMO

BACKGROUND: Despite large morphological differences between the nervous systems of lower animals and humans, striking functional similarities have been reported. However, little is known about how these functional similarities translate to cognitive similarities. As a first step towards studying the cognitive abilities of simple nervous systems, we here characterize the ongoing electrophysiological activity of the planarian Schmidtea mediterranea. One previous report using invasive microelectrodes describes that the ongoing neural activity is characterized by a 1/fx power spectrum with the exponent 'x' of the power spectrum close to 1. To extend these findings, we aimed to establish a recording protocol to measure ongoing neural activity safely and securely from alive and healthy planarians under different lighting conditions using non-invasive surface electrodes. RESULTS: As a replication and extension of the previous results, we show that the ongoing neural activity is characterized by a 1/fx power spectrum, that the exponent 'x' in living planarians is close to 1, and that changes in lighting induce changes in neural activity likely due to the planarian photophobia. CONCLUSIONS: We confirm the existence of continuous EEG activity in planarians and show that it is possible to noninvasively record this activity with surface wire electrodes. This opens up broad possibilities for continuous recordings across longer intervals, and repeated recordings from the same animals to study cognitive processes.


Assuntos
Planárias , Animais , Humanos , Planárias/anatomia & histologia , Planárias/fisiologia , Eletroencefalografia
4.
Neuroimage ; 257: 119307, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577024

RESUMO

The combination of signals from different sensory modalities can enhance perception and facilitate behavioral responses. While previous research described crossmodal influences in a wide range of tasks, it remains unclear how such influences drive performance enhancements. In particular, the neural mechanisms underlying performance-relevant crossmodal influences, as well as the latency and spatial profile of such influences are not well understood. Here, we examined data from high-density electroencephalography (N = 30) recordings to characterize the oscillatory signatures of crossmodal facilitation of response speed, as manifested in the speeding of visual responses by concurrent task-irrelevant auditory information. Using a data-driven analysis approach, we found that individual gains in response speed correlated with larger beta power difference (13-25 Hz) between the audiovisual and the visual condition, starting within 80 ms after stimulus onset in the secondary visual cortex and in multisensory association areas in the parietal cortex. In addition, we examined data from electrocorticography (ECoG) recordings in four epileptic patients in a comparable paradigm. These ECoG data revealed reduced beta power in audiovisual compared with visual trials in the superior temporal gyrus (STG). Collectively, our data suggest that the crossmodal facilitation of response speed is associated with reduced early beta power in multisensory association and secondary visual areas. The reduced early beta power may reflect an auditory-driven feedback signal to improve visual processing through attentional gating. These findings improve our understanding of the neural mechanisms underlying crossmodal response speed facilitation and highlight the critical role of beta oscillations in mediating behaviorally relevant multisensory processing.


Assuntos
Córtex Visual , Percepção Visual , Estimulação Acústica , Atenção/fisiologia , Percepção Auditiva/fisiologia , Eletroencefalografia , Humanos , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
5.
Eur Child Adolesc Psychiatry ; 31(2): 261-274, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230608

RESUMO

Child sexual abuse offences (CSOs) represent a severe ethical and socioeconomic burden for society. Juveniles with a sexual preference for prepubescent children (PP) commit a large percentage of CSOs, but have been widely neglected in neuroscience research. Aberrant neural responses to face stimuli have been observed in men with pedophilic interest. Thus far, it is unknown whether such aberrations exist already in PP. A passive face-viewing paradigm, including the presentation of child and adult faces, was deployed and high-density electroencephalography data were recorded. The study group comprised 25 PP and the control group involved 22 juveniles with age-adequate sexual preference. Attractiveness ratings and evoked brain responses were obtained for the face stimuli. An aberrant pattern of attractiveness ratings for child vs. adult faces was found in the PP group. Moreover, elevated occipital P1 amplitudes were observed for adult vs. child faces in both groups. At longer latency (340-426 ms), a stronger negative deflection to child vs. adult faces, which was source localized in higher visual, parietal and frontal regions, was specifically observed in the PP group. Our study provides evidence for enhanced neural processing of child face stimuli in PP, which might reflect elevated attention capture of face stimuli depicting members from the sexually preferred age group. This study expands our understanding of the neural foundations underlying sexual interest in prepubescent children and provides a promising path for the uncovering of objective biomarkers of sexual responsiveness to childlike body schemes in juveniles.


Assuntos
Pedofilia , Delitos Sexuais , Adulto , Atenção , Criança , Eletroencefalografia , Humanos , Masculino , Comportamento Sexual
6.
Eur J Neurosci ; 55(11-12): 3141-3153, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666291

RESUMO

Occipital oscillations in the alpha band are closely related to visual perception and attention. In multiple studies, increased alpha power has been shown to reduce detection rates of hard-to-detect visual stimuli. Recent studies explain this finding by a shift in perceptual bias. Moreover, the phase of alpha oscillations prior to stimulus onset appears to be critical for the detection of visual stimuli. This is explained by a shift in cortical excitability over the course of each alpha cycle. However, prior studies often used short presentation times of visual stimuli at the perceptual threshold. Here, we use longer presentation times to elucidate whether the same mechanisms hold for the perception of salient but challenging visual stimuli presented for up to 1,500 ms. To this end, we presented participants with hard to distinguish but salient upright or tilted Gaussian gratings in a two-alternative forced choice task, while recording occipital electroencephalographic activity. Previous reports link alpha power to stimulus detection hit rates, and we found that low prestimulus power at the individual alpha frequency relates to higher perceptual accuracy. Contrary to recent findings, we neither found an influence of alpha power on criterion, nor an influence of alpha phase on perception or response speed. We argue that longer presentation times might attenuate a possible response bias, and increased excitability might sharpen the discrimination ability, thereby leading to increased perceptual accuracy and unaffected response criterion.


Assuntos
Ritmo alfa , Excitabilidade Cortical , Ritmo alfa/fisiologia , Discriminação Psicológica/fisiologia , Eletroencefalografia , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia
7.
Neuroimage ; 246: 118787, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890792

RESUMO

In the flash-lag illusion (FLI), the position of a flash presented ahead of a moving bar is mislocalized, so the flash appears to lag the bar. Currently, it is not clear whether this effect is due to early perceptual-related neural processes such as motion extrapolation or reentrant processing, or due to later feedback processing relating to postdiction, i.e., retroactively altered perception. We presented 17 participants with the FLI paradigm while recording EEG. A central flash occurred either 51 ms ("early") or 16 ms ("late") before the bar moving from left to right reached the screen center. Participants judged whether the flash appeared to the right ("no flash lag illusion") or to the left ("flash-lag illusion") of the bar. Using single-trial linear modeling, we examined the influence of timing ("early" vs. "late") and perception ("illusion" vs. "no illusion") on flash-evoked brain responses and estimated the cortical sources underlying the FLI. An earlier frontal and occipital component (200-276 ms) differentiated time-locked early vs. late stimulus presentation, indicating that early evoked brain responses reflect feature encoding in the FLI. Perception of the FLI was associated with a late window (368-452 ms) in the ERP, with larger deflections for illusion than no illusion trials, localized to the left inferior occipital gyrus. This suggests a postdiction-related reconstruction of ambiguous sensory stimulation involving late processes in the occipito-temporal cortex, previously associated with temporal integration phenomena. Our findings indicate that perception of the FLI relies on an interplay between ongoing stimulus encoding of the moving bar and feedback processing of the flash, which takes place at later integration stages.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Ilusões/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Neurophysiol ; 126(3): 924-933, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346697

RESUMO

Understanding the neural correlates of risk-sensitive skin conductance responses can provide insights into their connection to emotional and cognitive processes. To provide insights into this connection, we studied the cortical correlates of risk-sensitive skin conductance peaks using electroencephalography. Fluctuations in skin conductance responses were elicited while participants played a threat-of-shock card game. Precise temporal information about skin conductance peaks was obtained by applying continuous decomposition analysis on raw electrodermal signals. Shortly preceding skin conductance peaks, we observed a decrease in oscillatory power in the frequency range between 3 and 17 Hz in occipitotemporal cortical areas. Atlas-based analysis indicated the left lingual gyrus as the source of the power decrease. The oscillatory power averaged across 3-17 Hz showed a significant negative relationship with the skin conductance peak amplitude. Our findings indicate a possible interaction between attention and threat perception.NEW & NOTEWORTHY We studied neural oscillations associated with risk-sensitive skin conductance responses. Going beyond previous studies, we applied methods with high-temporal resolution to account for the temporal properties of the sympathetic activity. Preceding skin conductance peaks, we observed decreased occipital cortex oscillatory power and a relationship between the oscillatory power decrease and the skin conductance peak amplitude. Our study suggests an interaction between attention and emotion such as threat perception reflected in skin conductance responses.


Assuntos
Ondas Encefálicas , Resposta Galvânica da Pele , Lobo Occipital/fisiologia , Assunção de Riscos , Humanos , Masculino , Adulto Jovem
9.
Cereb Cortex ; 31(12): 5536-5548, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34274967

RESUMO

Studies on schizophrenia (SCZ) and aberrant multisensory integration (MSI) show conflicting results, which are potentially confounded by attention deficits in SCZ. To test this, we examined the interplay between MSI and intersensory attention (IA) in healthy controls (HCs) (N = 27) and in SCZ (N = 27). Evoked brain potentials to unisensory-visual (V), unisensory-tactile (T), or spatiotemporally aligned bisensory VT stimuli were measured with high-density electroencephalography, while participants attended blockwise to either visual or tactile inputs. Behaviorally, IA effects in SCZ, relative to HC, were diminished for unisensory stimuli, but not for bisensory stimuli. At the neural level, we observed reduced IA effects for bisensory stimuli over mediofrontal scalp regions (230-320 ms) in SCZ. The analysis of MSI, using the additive approach, revealed multiple phases of integration over occipital and frontal scalp regions (240-364 ms), which did not differ between HC and SCZ. Furthermore, IA and MSI effects were both positively related to the behavioral performance in SCZ, indicating that IA and MSI mutually facilitate bisensory stimulus processing. Multisensory processing could facilitate stimulus processing and compensate for top-down attention deficits in SCZ. Differences in attentional demands, which may be differentially compensated by multisensory processing, could account for previous conflicting findings on MSI in SCZ.


Assuntos
Esquizofrenia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Eletroencefalografia/métodos , Humanos , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Visual/fisiologia
10.
Hum Brain Mapp ; 42(2): 452-466, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617132

RESUMO

In the ventriloquist illusion, spatially disparate visual signals can influence the perceived location of simultaneous sounds. Previous studies have shown asymmetrical responses in auditory cortical regions following perceived peripheral sound shifts. Moreover, higher-order cortical areas perform inferences on the sources of disparate audiovisual signals. Recent studies have also highlighted top-down influence in the ventriloquist illusion and postulated a governing function of neural oscillations for crossmodal processing. In this EEG study, we analyzed source-reconstructed neural oscillations to address the question of whether perceived sound shifts affect the laterality of auditory responses. Moreover, we investigated the modulation of neural oscillations related to the occurrence of the illusion more generally. With respect to the first question, we did not find evidence for significant changes in the laterality of auditory responses due to perceived sound shifts. However, we found a sustained reduction of mediofrontal theta-band power starting prior to stimulus onset when participants perceived the illusion compared to when they did not perceive the illusion. We suggest that this effect reflects a state of diminished cognitive control, leading to reliance on more readily discriminable visual information and increased crossmodal influence. We conclude that mediofrontal theta-band oscillations serve as a neural mechanism underlying top-down modulation of crossmodal processing in the ventriloquist illusion.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Ilusões/fisiologia , Estimulação Luminosa/métodos , Ritmo Teta/fisiologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Neurosci ; 41(7): 1505-1515, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33310755

RESUMO

Integrating information across different senses is a central feature of human perception. Previous research suggests that multisensory integration is shaped by a context-dependent and largely adaptive interplay between stimulus-driven bottom-up and top-down endogenous influences. One critical question concerns the extent to which this interplay is sensitive to the amount of available cognitive resources. In the present study, we investigated the influence of limited cognitive resources on audiovisual integration by measuring high-density electroencephalography (EEG) in healthy participants performing the sound-induced flash illusion (SIFI) and a verbal n-back task (0-back, low load and 2-back, high load) in a dual-task design. In the SIFI, the integration of a flash with two rapid beeps can induce the illusory perception of two flashes. We found that high compared with low load increased illusion susceptibility and modulated neural oscillations underlying illusion-related crossmodal interactions. Illusion perception under high load was associated with reduced early ß power (18-26 Hz, ∼70 ms) in auditory and motor areas, presumably reflecting an early mismatch signal and subsequent top-down influences including increased frontal θ power (7-9 Hz, ∼120 ms) in mid-anterior cingulate cortex (ACC) and a later ß power suppression (13-22 Hz, ∼350 ms) in prefrontal and auditory cortex. Our study demonstrates that integrative crossmodal interactions underlying the SIFI are sensitive to the amount of available cognitive resources and that multisensory integration engages top-down θ and ß oscillations when cognitive resources are scarce.SIGNIFICANCE STATEMENT The integration of information across multiple senses, a remarkable ability of our perceptual system, is influenced by multiple context-related factors, the role of which is highly debated. It is, for instance, poorly understood how available cognitive resources influence crossmodal interactions during multisensory integration. We addressed this question using the sound-induced flash illusion (SIFI), a phenomenon in which the integration of two rapid beeps together with a flash induces the illusion of a second flash. Replicating our previous work, we demonstrate that depletion of cognitive resources through a working memory (WM) task increases the perception of the illusion. With respect to the underlying neural processes, we show that when available resources are limited, multisensory integration engages top-down θ and ß oscillations.


Assuntos
Memória/fisiologia , Neurônios/fisiologia , Percepção/fisiologia , Sensação/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Ritmo beta/fisiologia , Eletroencefalografia , Feminino , Humanos , Ilusões , Masculino , Memória de Curto Prazo/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Ritmo Teta/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
12.
Sci Rep ; 10(1): 11872, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681138

RESUMO

Patients with schizophrenia (ScZ) often show impairments in auditory information processing. These impairments have been related to clinical symptoms, such as auditory hallucinations. Some researchers have hypothesized that aberrant low-frequency oscillations contribute to auditory information processing deficits in ScZ. A paradigm for which modulations in low-frequency oscillations are consistently found in healthy individuals is the auditory continuity illusion (ACI), in which restoration processes lead to a perceptual grouping of tone fragments and a mask, so that a physically interrupted sound is perceived as continuous. We used the ACI paradigm to test the hypothesis that low-frequency oscillations play a role in aberrant auditory information processing in patients with ScZ (N = 23). Compared with healthy control participants we found that patients with ScZ show elevated continuity illusions of interrupted, partially-masked tones. Electroencephalography data demonstrate that this elevated continuity perception is reflected by diminished 3 Hz power. This suggests that reduced low-frequency oscillations relate to elevated restoration processes in ScZ. Our findings support the hypothesis that aberrant low-frequency oscillations contribute to altered perception-related auditory information processing in ScZ.


Assuntos
Alucinações , Ilusões/psicologia , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Estimulação Acústica , Análise de Dados , Eletroencefalografia , Potenciais Evocados Auditivos , Feminino , Humanos , Masculino
13.
Front Neurosci ; 14: 298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317920

RESUMO

Twenty years ago, the first report on the sound-induced double flash illusion, a visual illusion induced by sound, was published. In this paradigm, participants are presented with different numbers of auditory and visual stimuli. In case of an incongruent number of auditory and visual stimuli, the influence of auditory information on visual perception can lead to the perception of the illusion. Thus, combining two auditory stimuli with one visual stimulus can induce the perception of two visual stimuli, the so-called fission illusion. Alternatively, combining one auditory stimulus with two visual stimuli can induce the perception of one visual stimulus, the so-called fusion illusion. Overall, current research shows that the illusion is a reliable indicator of multisensory integration. It has also been replicated using different stimulus combinations, such as visual and tactile stimuli. Importantly, the robustness of the illusion allows the widespread use for assessing multisensory integration across different groups of healthy participants and clinical populations and in various task setting. This review will give an overview of the experimental evidence supporting the illusion, the current state of research concerning the influence of cognitive processes on the illusion, the neural mechanisms underlying the illusion, and future research directions. Moreover, an exemplary experimental setup will be described with different options to examine perception, alongside code to test and replicate the illusion online or in the laboratory.

14.
J Eat Disord ; 8: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280464

RESUMO

BACKGROUND: Findings are mixed regarding the association of electroencephalographic (EEG) attentional bias measures and body weight, with few studies measuring food craving or intake and no study reporting oscillatory measures. METHODS: EEG data were collected while 28 satiated adolescents (14 overweight/obese) viewed pictures of neutral, low-calorie food, and high-calorie food stimuli and rated their desire to eat, before having access to high-calorie snacks. RESULTS: Unlike normal-weight adolescents, overweight/obese participants showed similar P300 amplitudes for high- and low-calorie food, and strongest event-related alpha band desynchronization for low-calorie stimuli. P300 amplitudes and state craving for low-calorie food furthermore predicted snack intake in this group. CONCLUSIONS: The current research focus in overweight/obesity might need to be extended to include low-calorie food. While all participants showed an attentional bias for high-calorie food, it was the processing of low-calorie food which distinguished the two weight groups on measures of neural activity and which was associated with snack food intake in the overweight/obese group.

15.
PLoS One ; 15(3): e0229575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119712

RESUMO

In the era of smartphones, route-planning and navigation is supported by freely and globally available web mapping services, such as OpenStreetMap or Google Maps. These services provide digital maps, as well as route planning functions that visually highlight the suggested route in the map. Additionally, such digital maps contain landmark pictograms, i.e. representations of salient objects in the environment. These landmark representations are, amongst other reference points, relevant for orientation, route memory, and the formation of a cognitive map of the environment. The amount of visible landmarks in maps used for navigation and route planning depends on the width of the displayed margin areas around the route. The amount of further reference points is based on the visual complexity of the map. This raises the question how factors like the distance of landmark representations to the route and visual map complexity determine the relevance of specific landmarks for memorizing a route. In order to answer this question, two experiments that investigated the relation between eye fixation patterns on landmark representations, landmark positions, route memory and visual map complexity were carried out. The results indicate that the attentional processing of landmark representations gradually decreases with an increasing distance to the route, decision points and potential decision points. Furthermore, this relation was found to be affected by the visual complexity of the map. In maps with low visual complexity, landmark representations further away from the route are fixated. However, route memory was not found to be affected by visual complexity of the map. We argue that map users might require a certain amount of reference points to form spatial relations as a foundation for a mental representation of space. As maps with low visual complexity offer less reference points, people need to scan a wider area. Therefore, visual complexity of the area displayed in a map should be considered in navigation-oriented map design by increasing displayed margins around the route in maps with a low visual complexity. In order to verify our assumption that the amount of reference points not only affects visual attention processes, but also the formation of a mental representation of space, additional research is required.


Assuntos
Aprendizagem Espacial/fisiologia , Navegação Espacial/fisiologia , Processamento Espacial/fisiologia , Adulto , Atenção/fisiologia , Cognição/fisiologia , Feminino , Mapeamento Geográfico , Humanos , Masculino , Memória/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia
16.
Front Psychiatry ; 10: 517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379629

RESUMO

Symptoms of schizophrenia (SCZ) are likely to be generated by genetically mediated synaptic dysfunction, which contribute to large-scale functional neural dysconnectivity. Recent electrophysiological studies suggest that this dysconnectivity is present not only at a spatial level but also at a temporal level, operationalized as long-range temporal correlations (LRTCs). Previous research suggests that alpha and beta frequency bands have weaker temporal stability in people with SCZ. This study sought to replicate these findings with high-density electroencephalography (EEG), enabling a spatially more accurate analysis of LRTC differences, and to test associations with characteristic SCZ symptoms and cognitive deficits. A 128-channel EEG was used to record eyes-open resting state brain activity of 23 people with SCZ and 24 matched healthy controls (HCs). LRTCs were derived for alpha (8-12 Hz) and beta (13-25 Hz) frequency bands. As an exploratory analysis, LRTC was source projected using sLoreta. People with SCZ showed an area of significantly reduced beta-band LRTC compared with HCs over bilateral posterior regions. There were no between-group differences in alpha-band activity. Individual symptoms of SCZ were not related to LRTC values nor were cognitive deficits. The study confirms that people with SCZ have reduced temporal stability in the beta frequency band. The absence of group differences in the alpha band may be attributed to the fact that people had, in contrast to previous studies, their eyes open in the current study. Taken together, our study confirms the utility of LRTC as a marker of network instability in people with SCZ and provides a novel empirical perspective for future examinations of network dysfunction salience in SCZ research.

17.
Sci Rep ; 9(1): 5983, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979927

RESUMO

In the sound-induced flash illusion, auditory input affects the perception of visual stimuli with a large inter- and intraindividual variability. Crossmodal influence in this illusion has been shown to be associated with activity in visual and temporal areas. In this electroencephalography study, we investigated the relationship between oscillatory brain activity prior to stimulus presentation and subsequent perception of the illusion on the level of single trials. Using logistic regression, we modeled the perceptual outcome dependent on oscillatory power. We found that 25 Hz to 41 Hz activity over occipital electrodes from 0.17 s to 0.05 s prior to stimulus onset predicted the perception of the illusion. A t-test of power values, averaged over the significant cluster, between illusion and no-illusion trials showed higher power in illusion trials, corroborating the modeling result. We conclude that the observed power modulation predisposes the integration of audiovisual signals, providing further evidence for the governing role of prestimulus brain oscillations in multisensory perception.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Ilusões/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
18.
Appl Ergon ; 75: 214-220, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30509529

RESUMO

Landmarks, objects in the environment used for orientation, navigation and the formation of cognitive maps are often represented in maps as pictograms. In order to support these tasks effectively and efficiently, landmark pictograms also need to be salient, as the map user needs to identify and process them quickly and easily. Two additional relevant characteristics for the usability of landmark pictograms are their meaningfulness and recognition performance. Meaningfulness is required to understand which categories of objects are represented by the pictograms. Ease of recognition prevents the necessity to consult a map repetitively and may support the formation of a cognitive map of the environment. In the present study, we investigated the relation between salience, meaningfulness and recognition performance of OpenStreetMap (OSM) pictograms and the potential effects of the visual complexity of pictograms on these usability characteristics. Salience was measured via eye fixations on specific pictograms, meaningfulness with an explicit continuous scale and recognition performance with a yes/no recognition memory paradigm. Statistical analyses showed that pictograms drew more visual attention if they were visually complex or if their meaning was inapprehensible or ambiguous. Less apprehensible pictograms were also recognized more often. Interestingly, the data indicated that longer fixations could lead to worse recognition performance. Long fixations on a pictogram may increase the likelihood of false recognition in subsequent situations where the pictogram is no longer valid or relevant. Based on the findings, we suggest balancing the meaningfulness and visual complexity of contiguous pictograms to enhance their recognition and to provide an optimal level of salience of single objects.


Assuntos
Mapas como Assunto , Reconhecimento Visual de Modelos , Reconhecimento Psicológico , Análise e Desempenho de Tarefas , Adulto , Atenção , Compreensão , Feminino , Humanos , Masculino , Orientação Espacial , Adulto Jovem
19.
Sci Rep ; 8(1): 11530, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069059

RESUMO

The role of attentional processes in the integration of input from different sensory modalities is complex and multifaceted. Importantly, little is known about how simple, non-linguistic stimuli are integrated when the resources available for sensory processing are exhausted. We studied this question by examining multisensory integration under conditions of limited endogenous attentional resources. Multisensory integration was assessed through the sound-induced flash illusion (SIFI), in which a flash presented simultaneously with two short auditory beeps is often perceived as two flashes, while cognitive load was manipulated using an n-back task. A one-way repeated measures ANOVA revealed that increased cognitive demands had a significant effect on the perception of the illusion while post-hoc tests showed that participants' illusion perception was increased when attentional resources were limited. Additional analysis demonstrated that this effect was not related to a response bias. These findings provide evidence that the integration of non-speech, audiovisual stimuli is enhanced under reduced attentional resources and it therefore supports the notion that top-down attentional control plays an essential role in multisensory integration.


Assuntos
Atenção , Percepção Auditiva , Cognição , Ilusões , Percepção Visual , Estimulação Acústica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto Jovem
20.
Front Psychol ; 9: 578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867621

RESUMO

Clinical studies suggest aberrant neurotransmitter concentrations in the brains of patients with schizophrenia (SCZ). Numerous studies have indicated deviant glutamate concentrations in SCZ, although the findings are inconsistent. Moreover, alterations in glutamate concentrations could be linked to personality traits in SCZ. Here, we examined the relationships between personality dimensions and glutamate concentrations in a voxel encompassing the occipital cortex (OCC) and another voxel encompassing the left superior temporal sulcus (STS). We used proton magnetic resonance spectroscopy to examine glutamate concentrations in the OCC and the STS in 19 SCZ and 21 non-psychiatric healthy control (HC) participants. Personality dimensions neuroticism, extraversion, openness, agreeableness and conscientiousness were assessed using the NEO-FFI questionnaire. SCZ compared to HC showed higher glutamate concentrations in the STS, reduced extraversion scores, and enhanced neuroticism scores. No group differences were observed for the other personality traits and for glutamate concentrations in the OCC. For the SCZ group, glutamate concentrations in STS were negatively correlated with the neuroticism scores [r = -0.537, p = 0.018] but this was not found in HC [r(19) = 0.011, p = 0.962]. No other significant correlations were found. Our study showed an inverse relationship between glutamate concentrations in the STS and neuroticism scores in SCZ. Elevated glutamate in the STS might serve as a compensatory mechanism that enables patients with enhanced concentrations to control and prevent the expression of neuroticism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA