Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(19): 8591-8604, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35470669

RESUMO

Understanding the mechanisms of charge transport in batteries is important for the rational design of new electrolyte formulations. Persistent questions about ion transport mechanisms in battery electrolytes are often framed in terms of vehicular diffusion by persistent ion-solvent complexes versus structural diffusion through the breaking and reformation of ion-solvent contacts, i.e., solvent exchange events. Ultrafast two-dimensional (2D) IR spectroscopy can probe exchange processes directly via the evolution of the cross-peaks on picosecond time scales. However, vibrational energy transfer in the absence of solvent exchange gives rise to the same spectral signatures, hiding the desired processes. We employ 2D IR on solvent resonances of a mixture of acetonitrile isotopologues to differentiate chemical exchange and energy-transfer dynamics in a comprehensive series of Li+, Mg2+, Zn2+, Ca2+, and Ba2+ bis(trifluoromethylsulfonyl)imide electrolytes from the dilute to the superconcentrated regime. No exchange phenomena occur within at least 100 ps, regardless of the ion identity, salt concentration, and presence of water. All of the observed spectral dynamics originate from the intermolecular energy transfer. These results place the lower experimental boundary on the ion-solvent residence times to several hundred picoseconds, much slower than previously suggested. With the help of MD simulations and conductivity measurements on the Li+ and Zn2+ systems, we discuss these results as a continuum of vehicular and structural modalities that vary with concentration and emphasize the importance of collective electrolyte motions to ion transport. These results hold broadly applicable to many battery-relevant ions and solvents.

2.
J Phys Chem B ; 126(1): 278-291, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962409

RESUMO

Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.


Assuntos
Eletrólitos , Vibração , Acetonitrilas , Íons , Espectrofotometria Infravermelho
3.
Nature ; 569(7758): 703-707, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31022719

RESUMO

The presence of a quaternary centre-a carbon with four other carbons bonded to it-in any given molecule can have a substantial chemical and biological impact. In many cases, it can enable otherwise challenging chemistry. For example, quaternary centres induce large rate enhancements in cyclization reactions-known as the Thorpe-Ingold effect-which has application in drug delivery for molecules with modest bioavailability1. Similarly, the addition of quaternary centres to a drug candidate can enhance both its activity and its metabolic stability2. When present in chiral ligands3, catalysts4 and auxiliaries5, quaternary centres can guide reactions toward both improved and unique regio-, stereo- and/or enantioselectivity. However, owing to their distinct steric congestion and conformational restriction, the formation of quaternary centres can be achieved reliably by only a few chemical transformations6,7. For particularly challenging cases-for example, the vicinal all-carbon8, oxa- and aza-quaternary centres9 in molecules such as azadirachtin10,11, scopadulcic acid A12,13 and acutumine14-the development of target-specific approaches as well as multiple functional-group and redox manipulations is often necessary. It is therefore desirable to establish alternative ways in which quaternary centres can positively affect and guide synthetic planning. Here we show that if a synthesis is designed such that each quaternary centre is deliberately leveraged to simplify the construction of the next-either through rate acceleration or blocking effects-then highly efficient, scalable and modular syntheses can result. This approach is illustrated using the conidiogenone family of terpenes as a representative case; however, this framework provides a distinct planning logic that is applicable to other targets of similar synthetic complexity that contain multiple quaternary centres.


Assuntos
Técnicas de Química Sintética , Terpenos/química , Terpenos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Diterpenos/síntese química , Diterpenos/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA