Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 194: 107658, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811066

RESUMO

Exercise facilitates hippocampal neurogenesis and neuroplasticity that in turn, promotes cognitive function. Our previous studies have demonstrated that in male mice, voluntary exercise enables hippocampus-dependent learning in conditions that are normally subthreshold for long-term memory formation in sedentary animals. Such cognitive enhancement can be maintained long after exercise has ceased and can be re-engaged by a subsequent subthreshold exercise session, suggesting exercise-induced benefits are temporally dynamic. In females, the extent to which the benefits of exercise can be maintained and the mechanisms underlying this maintenance have yet to be defined. Here, we examined the exercise parameters required to initiate and maintain the benefits of exercise in female C57BL/6J mice. Using a subthreshold version of the hippocampus-dependent task called object-location memory (OLM) task, we show that 14d of voluntary exercise enables learning under subthreshold acquisition conditions in female mice. Following the initial exercise, a 7d sedentary delay results in diminished performance, which can be re-facilitated when animals receive 2d of reactivating exercise following the sedentary delay. Assessment of estrous cycle reveals enhanced wheel running activity during the estrus phase relative to the diestrus phase, whereas estrous phase on training or test had no effect on OLM performance. Utilizing the same exercise parameters, we demonstrate that 14d of exercise enhances long-term potentiation (LTP) in the CA1 region of the hippocampus, an effect that persists throughout the sedentary delay and following the reactivating exercise session. Previous studies have proposed exercise-induced BDNF upregulation as the mechanism underlying exercise-mediated benefits on synaptic plasticity and cognition. However, our assessment of hippocampal Bdnf mRNA expression following memory retrieval reveals no difference between exercise conditions and control, suggesting that persistent Bdnf upregulation may not be required for maintenance of exercise-induced benefits. Together, our data indicate that 14d of voluntary exercise can initiate long-lasting benefits on neuroplasticity and cognitive function in female mice, establishing the first evidence on the temporal endurance of exercise-induced benefits in females.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Condicionamento Físico Animal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia
2.
Neurobiol Learn Mem ; 178: 107367, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359392

RESUMO

Deep space travel presents a number of measurable risks including exposure to a spectrum of radiations of varying qualities, termed galactic cosmic radiation (GCR) that are capable of penetrating the spacecraft, traversing through the body and impacting brain function. Using rodents, studies have reported that exposure to simulated GCR leads to cognitive impairments associated with changes in hippocampus function that can persist as long as one-year post exposure with no sign of recovery. Whether memory can be updated to incorporate new information in mice exposed to GCR is unknown. Further, mechanisms underlying long lasting impairments in cognitive function as a result of GCR exposure have yet to be defined. Here, we examined whether whole body exposure to simulated GCR using 6 ions and doses of 5 or 30 cGy interfered with the ability to update an existing memory or impact hippocampal synaptic plasticity, a cellular mechanism believed to underlie memory processes, by examining long term potentiation (LTP) in acute hippocampal slices from middle aged male mice 3.5-5 months after radiation exposure. Using a modified version of the hippocampus-dependent object location memory task developed by our lab termed "Objects in Updated Locations" (OUL) task we find that GCR exposure impaired hippocampus-dependent memory updating and hippocampal LTP 3.5-5 months after exposure. Further, we find that impairments in LTP are reversed through one-time systemic subcutaneous injection of the histone deacetylase 3 inhibitor RGFP 966 (10 mg/kg), suggesting that long lasting impairments in cognitive function may be mediated at least in part, through epigenetic mechanisms.


Assuntos
Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Acrilamidas/farmacologia , Animais , Radiação Cósmica , Hipocampo/efeitos da radiação , Histona Desacetilases , Masculino , Memória/efeitos da radiação , Camundongos , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação , Fenilenodiaminas/farmacologia , Exposição à Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA