Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroimage ; 186: 399-409, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342237

RESUMO

PURPOSE: The lateral geniculate nucleus (LGN) is an essential nucleus of the visual pathway, occupying a small volume (60-160 mm3) among the other thalamic nuclei. The reported LGN volumes vary greatly across studies due to technical limitations and due to methodological differences of volume assessment. Yet, structural and anatomical alterations in ophthalmologic and neurodegenerative pathologies can only be revealed by a precise and reliable LGN representation. To improve LGN volume assessment, we first implemented a reference acquisition for LGN volume determination with optimized Contrast to Noise Ratio (CNR) and high spatial resolution. Next, we compared CNR efficiency and rating reliability of 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) images using white matter nulled (WMn) and grey matter nulled (GMn) sequences and its subtraction (WMn-GMn) relative to the clinical standard Proton Density Turbo Spin Echo (PD 2D TSE) and the reference acquisition. We hypothesized that 3D MPRAGE should provide a higher CNR and volume determination accuracy than the currently used 2D sequences. MATERIALS AND METHODS: In 31 healthy subjects, we obtained at 3 and 7 T the following MR sequences: PD-TSE, MPRAGE with white/grey matter signal nulled (WMn/GMn), and a motion-corrected segmented MPRAGE sequence with a resolution of 0.4 × 0.4 × 0.4 mm3 (reference acquisition). To increase CNR, GMn were subtracted from WMn (WMn-GMn). Four investigators manually segmented the LGN independently. RESULTS: The reference acquisition provided a very sharp depiction of the LGN and an estimated mean LGN volume of 124 ±â€¯3.3 mm3. WMn-GMn had the highest CNR and gave the most reproducible LGN volume estimations between field strengths. Even with the highest CNR efficiency, PD-TSE gave inconsistent LGN volumes with the weakest reference acquisition correlation. The LGN WM rim induced a significant difference between LGN volumes estimated from WMn and GMn. WMn and GMn LGN volume estimations explained most of the reference acquisition volumes' variance. For all sequences, the volume rating reliability were good. On the other hand, the best CNR rating reliability, LGN volume and CNR correlations with the reference acquisition were obtained with GMn at 7 T. CONCLUSION: WMn and GMn MPRAGE allow reliable LGN volume determination at both field strengths. The precise location and identification of the LGN (volume) can help to optimize neuroanatomical and neurophysiological studies, which involve the LGN structure. Our optimized imaging protocol may be used for clinical applications aiming at small nuclei volumetric and CNR quantification.


Assuntos
Corpos Geniculados/anatomia & histologia , Corpos Geniculados/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Feminino , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
2.
Disabil Rehabil Assist Technol ; 10(5): 385-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24730659

RESUMO

PURPOSE: To evaluate feasibility and neurophysiological changes after virtual reality (VR)-based training of upper limb (UL) movements. METHOD: Single-case A-B-A-design with two male stroke patients (P1:67 y and 50 y, 3.5 and 3 y after onset) with UL motor impairments, 45-min therapy sessions 5×/week over 4 weeks. Patients facing screen, used bimanual data gloves to control virtual arms. Three applications trained bimanual reaching, grasping, hand opening. Assessments during 2-week baseline, weekly during intervention, at 3-month follow-up (FU): Goal Attainment Scale (GAS), Chedoke Arm and Hand Activity Inventory (CAHAI), Chedoke-McMaster Stroke Assessment (CMSA), Extended Barthel Index (EBI), Motor Activity Log (MAL). Functional magnetic resonance imaging scans (FMRI) before, immediately after treatment and at FU. RESULTS: P1 executed 5478 grasps (paretic arm). Improvements in CAHAI (+4) were maintained at FU. GAS changed to +1 post-test and +2 at FU. P2 executed 9835 grasps (paretic arm). CAHAI improvements (+13) were maintained at FU. GAS scores changed to -1 post-test and +1 at FU. MAL scores changed from 3.7 at pre-test to 5.5 post-test and 3.3 at FU. CONCLUSION: The VR-based intervention was feasible, safe, and intense. Adjustable application settings maintained training challenge and patient motivation. ADL-relevant UL functional improvements persisted at FU and were related to changed cortical activation patterns. Implications for Rehabilitation YouGrabber trains uni- and bimanual upper motor function. Its application is feasible, safe, and intense. The control of the virtual arms can be done in three main ways: (a) normal (b) virtual mirror therapy, or (c) virtual following. The mirroring feature provides an illusion of affected limb movements during the period when the affected upper limb (UL) is resting. The YouGrabber training led to ADL-relevant UL functional improvements that were still assessable 12 weeks after intervention finalization and were related to changed cortical activation patterns.


Assuntos
Simulação por Computador , Modalidades de Fisioterapia , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior , Interface Usuário-Computador , Atividades Cotidianas , Doença Crônica , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia
3.
Eur J Neurosci ; 31(8): 1483-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20384781

RESUMO

Previous studies investigating the blood oxygen level-dependent (BOLD) signal in the human sensorimotor cortex during static force (maintained for a few seconds) and dynamic force (repetitive force pulses) resulted in contradictory findings. Therefore, we conducted a whole-brain functional magnetic resonance imaging study during a visuomotor task requiring the production of either dynamic or static power grip force. Thereby we aimed at clarifying whether the BOLD signal behaves differently with dynamic and static force in the primary motor cortex, and whether it behaves in the same way in all areas and regions involved in force production. In the static condition, participants applied visually guided, isometric grip force on a dynamometer of 20% maximal voluntary contraction (MVC) and held this force for 21 s. In the dynamic condition, self-paced force pulses of 20% MVC were produced at a rate of 0.5 Hz. Static and dynamic force production activated an overlapping network of sensorimotor cortical and subcortical regions. However, the production of a significantly higher mean static force compared with the dynamic force resulted in a significantly smaller BOLD signal in the contralateral motor cortex, confirming observations of an earlier investigation. In addition, we found that the ipsilateral anterior cerebellum behaved similar to the motor cortex, whereas in all other activated regions the activation during static and dynamic force did not significantly differ. These findings demonstrate that various regions of the sensorimotor network participate differentially in the production and control of low static and dynamic grip force, and raise important questions concerning the interpretation of the BOLD signal with respect to mechanisms of neurovascular coupling.


Assuntos
Encéfalo/fisiologia , Força da Mão/fisiologia , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Oxigênio/sangue , Córtex Somatossensorial/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
4.
Hum Brain Mapp ; 30(8): 2453-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19172654

RESUMO

Force scaling in the sensorimotor network during generation and control of static or dynamic grip force has been the subject of many investigations in monkeys and human subjects. In human, the relationship between BOLD signal in cortical and subcortical regions and force still remains controversial. With respect to grip force, the modulation of the BOLD signal has been mostly studied for forces often reaching high levels while little attention has been given to the low range for which electrophysiological neuronal correlates have been demonstrated. We thus conducted a whole-brain fMRI study on the control of fine-graded force in the low range, using a power grip and three force conditions in a block design. Participants generated on a dynamometer visually guided repetitive force pulses (ca. 0.5 Hz), reaching target forces of 10%, 20%, and 30% of maximum voluntary contraction. Regions of interest analysis disclosed activation in the entire cortical and subcortical sensorimotor network and significant force-related modulation in several regions, including primary motor (M1) and somatosensory cortex, ventral premotor and inferior parietal areas, and cerebellum. The BOLD signal, however, increased monotonically with force only in contralateral M1 and ipsilateral anterior cerebellum. The remaining regions were activated with force in various nonlinear manners, suggesting that other factors such as visual input, attention, and muscle recruitment also modulate the BOLD signal in this visuomotor task. These findings demonstrate that various regions of the sensorimotor network participate differentially in the production and control of fine-graded grip forces.


Assuntos
Encéfalo/fisiologia , Força da Mão/fisiologia , Atividade Motora/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Feminino , Mãos , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Dinamômetro de Força Muscular , Adulto Jovem
5.
Hum Brain Mapp ; 30(3): 963-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18344193

RESUMO

The main scope of this study was to test the feasibility and reliability of FES in a MR-environment. Functional Electrical Stimulation (FES) is used in the rehabilitation therapy of patients after stroke or spinal cord injury to improve their motor abilities. Its principle lies in applying repeated electrical stimulation to the relevant nerves or muscles for eliciting either isometric or concentric contractions of the treated muscles. In this study we report cerebral activation patterns in healthy subjects undergoing fMRI during FES stimulation. We stimulated the wrist extensor and flexor muscles in an alternating pattern while BOLD-fMRI was recorded. We used both block and event-related designs to demonstrate their feasibility for recording FES activation in the same cortical and subcortical areas. Six out of fifteen subjects repeated the experiment three times within the same session to control intraindividual variance. In both block and event-related design, the analysis revealed an activation pattern comprising the contralateral primary motor cortex, primary somatosensory cortex and premotor cortex; the ipsilateral cerebellum; bilateral secondary somatosensory cortex, the supplementary motor area and anterior cingulate cortex. Within the same subjects we observed a consistent replication of the activation pattern shown in overlapping regions centered on the peak of activation. Similar time course within these regions were demonstrated in the event-related design. Thus, both techniques demonstrate reliable activation of the sensorimotor network and eventually can be used for assessing plastic changes associated with FES rehabilitation treatment.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Músculo Esquelético/inervação , Punho/inervação , Adulto , Estimulação Elétrica , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/fisiologia , Punho/fisiologia
6.
PLoS One ; 3(8): e3082, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18769476

RESUMO

Multi-modal visuo-tactile stimulation of the type performed in the rubber hand illusion can induce the brain to temporarily incorporate external objects into the body image. In this study we show that audio-visual stimulation combined with mental imagery more rapidly elicits an elevated physiological response (skin conductance) after an unexpected threat to a virtual limb, compared to audio-visual stimulation alone. Two groups of subjects seated in front of a monitor watched a first-person perspective view of slow movements of two virtual arms intercepting virtual balls rolling towards the viewer. One group was instructed to simply observe the movements of the two virtual arms, while the other group was instructed to observe the virtual arms and imagine that the arms were their own. After 84 seconds the right virtual arm was unexpectedly "stabbed" by a knife and began "bleeding". This aversive stimulus caused both groups to show a significant increase in skin conductance. In addition, the observation-with-imagery group showed a significantly higher skin conductance (p<0.05) than the observation-only group over a 2-second period shortly after the aversive stimulus onset. No corresponding change was found in subjects' heart rates. Our results suggest that simple visual input combined with mental imagery may induce the brain to measurably temporarily incorporate external objects into its body image.


Assuntos
Resposta Galvânica da Pele/fisiologia , Interface Usuário-Computador , Agressão , Ansiedade , Braço/fisiologia , Coerção , Humanos , Ilusões , Imaginação , Dor/fisiopatologia , Estimulação Luminosa , Estimulação Física , Tato/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA