Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6759, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185619

RESUMO

Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites-reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.


Assuntos
Antozoários , Animais , Ecossistema , Recifes de Corais , Água do Mar , Espécies em Perigo de Extinção
2.
Harmful Algae ; 114: 102223, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550294

RESUMO

Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis on the West Florida Shelf have become a nearly annual occurrence causing widespread ecological and economic harm. Effects range from minor respiratory irritation and localized fish kills to large-scale and long-term events causing massive mortalities to marine organisms. Reports of hypoxia on the shelf have been infrequent; however, there have been some indications that some HABs have been associated with localized hypoxia. We examined oceanographic data from 2004 to 2019 across the West Florida Shelf to determine the frequency of hypoxia and to assess its association with known HABs. Hypoxia was present in 5 of the 16 years examined and was always found shoreward of the 50-meter bathymetry line. There were 2 clusters of recurrent hypoxia: midshelf off the Big Bend coast and near the southwest Florida coast. We identified 3 hypoxic events that were characterized by multiple conductivity, temperature, and depth (CTD) casts and occurred concurrently with extreme HABs in 2005, 2014, and 2018. These HAB-hypoxia events occurred when K. brevis blooms initiated in early summer months and persisted into the fall likely driven by increased biological oxygen demand from decaying algal biomass and reduced water column ventilation due to stratification. There were also four years, 2011, 2013, 2015, and 2017, with low dissolved oxygen located near the shelf break that were likely associated with upwelling of deeper Gulf of Mexico water onto the shelf. We had difficulty in assessing the spatiotemporal extent of these events due to limited data availability and potentially unobserved hypoxia due to the inconsistent difference between the bottom of the CTD cast and the seafloor. While we cannot unequivocally explain the association between extreme HABs and hypoxia on the West Florida Shelf, there is sufficient evidence to suggest a causal linkage between them.


Assuntos
Dinoflagellida , Animais , Florida , Proliferação Nociva de Algas , Hipóxia , Água
3.
Geohealth ; 1(1): 17-36, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30596189

RESUMO

Few conceptual frameworks attempt to connect disaster-associated environmental injuries to impacts on ecosystem services (the benefits humans derive from nature) and thence to both psychological and physiological human health effects. To our knowledge, this study is one of the first, if not the first, to develop a detailed conceptual model of how degraded ecosystem services affect cumulative stress impacts on the health of individual humans and communities. Our comprehensive Disaster-Pressure State-Ecosystem Services-Response-Health (DPSERH) model demonstrates that oil spills, hurricanes, and other disasters can change key ecosystem components resulting in reductions in individual and multiple ecosystem services that support people's livelihoods, health, and way of life. Further, the model elucidates how damage to ecosystem services produces acute, chronic, and cumulative stress in humans which increases risk of adverse psychological and physiological health outcomes. While developed and initially applied within the context of the Gulf of Mexico, it should work equally well in other geographies and for many disasters that cause impairment of ecosystem services. Use of this new tool will improve planning for responses to future disasters and help society more fully account for the costs and benefits of potential management responses. The model also can be used to help direct investments in improving response capabilities of the public health community, biomedical researchers, and environmental scientists. Finally, the model illustrates why the broad range of potential human health effects of disasters should receive equal attention to that accorded environmental damages in assessing restoration and recovery costs and time frames.

4.
Glob Chang Biol ; 21(7): 2554-2568, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25778777

RESUMO

The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic phenomena including climate, hurricanes, coastal development, agricultural runoff, oil spills, and fishing. These complex and interacting stressors, together with the highly dynamic nature of this ecosystem, present challenges for the effective management of its resources. We analyze a compilation of over 100 indicators representing physical, biological, and economic aspects of the Gulf of Mexico and find that an ecosystem-wide reorganization occurred in the mid-1990s. Further analysis of fishery landings composition data indicates a major shift in the late 1970s coincident with the advent of US national fisheries management policy, as well as significant shifts in the mid-1960s and the mid-1990s. These latter shifts are aligned temporally with changes in a major climate mode in the Atlantic Ocean: the Atlantic Multidecadal Oscillation (AMO). We provide an explanation for how the AMO may drive physical changes in the Gulf of Mexico, thus altering higher-level ecosystem dynamics. The hypotheses presented here should provide focus for further targeted studies, particularly in regard to whether and how management should adjust to different climate regimes or states of nature. Our study highlights the challenges in understanding the effects of climatic drivers against a background of multiple anthropogenic pressures, particularly in a system where these forces interact in complex and nonlinear ways.

5.
Environ Manage ; 55(4): 836-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216988

RESUMO

The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.


Assuntos
Baías , Mudança Climática , Ecossistema , Peixes , Invertebrados , Animais , Pesqueiros , Florida , Cadeia Alimentar , Previsões/métodos , Modelos Teóricos
6.
Environ Sci Technol ; 48(3): 1803-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24377909

RESUMO

In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.


Assuntos
Monitoramento Ambiental/instrumentação , Poluição por Petróleo/análise , Petróleo/análise , Benzeno , Fluorometria/instrumentação , Hidrocarbonetos , México , Dispositivos Ópticos , Tolueno , Movimentos da Água , Tempo (Meteorologia) , Xilenos
7.
PLoS One ; 8(8): e70766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951002

RESUMO

There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Atividades Humanas , Modelos Teóricos , Florida , Geografia , Humanos , Oceanografia
8.
J Phycol ; 49(1): 18-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27008384
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA