RESUMO
BACKGROUND: New psychoactive substances (NPS) are of public health concern due to their sporadic proliferation and the dearth of information on toxicity when consumed. In addition to seized data from forensic and toxicology reporting, wastewater analysis serves as a complimentary tool for NPS surveillance. A method to detect 71 NPS by simple filtration followed by liquid-chromatography tandem mass spectrometry was developed to detect multiclass NPS consisting of arylcyclohexylamines, designer benzodiazepines, synthetic cannabinoids, synthetic opioids, phenethylamines, synthetic cathinones, tryptamines, and indole alkaloids. RESULTS: In this work, the influential factors for electrospray ionisation were identified and optimised using the fractional factorial design and face-centred central composite design, respectively. The filtration loss during sample clean-up was assessed for all compounds. The final method was validated and applied to wastewater collected from a music festival held in Queensland in 2022. The validated method had linearity between 0.5 ng L-1 and 5000 ng L-1, the limit of quantification (LOQ) ranges from 0.6 ng L-1 to 70 ng L-1, precision within ±20 %, accuracy ranges from 70 % to 120 %, and matrix effect ranges from soft (0 %-20 %) to medium (20 %-50 %) for the majority of the compounds. NPS detected in the festival were 2-fluorodeschloroketamine, 7-hydroxymitragynine, mitragynine, N,N-dimethylpentylone, pentylone, phenibut, and O-desmethyltramadol. SIGNIFICANCE: Systematic electrospray ionisation optimisation using the design of experiment for a large method is practical and provides in-depth chemical information on studied compounds. The optimised method demonstrated the applicability of analysing samples collected from a festival in this work.
Assuntos
Psicotrópicos , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/análise , Águas Residuárias/química , Psicotrópicos/análise , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Limite de DetecçãoRESUMO
Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.