Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Adv ; 10(22): eadl0320, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820160

RESUMO

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.


Assuntos
Biossíntese de Proteínas , Ribonuclease Pancreático , Ribossomos , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Humanos , Animais , Camundongos , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Linhagem Celular , Especificidade de Órgãos , Proteínas de Transporte
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762390

RESUMO

Although dry eye disease (DED) is one of the most common ocular surface diseases worldwide, its pathogenesis is incompletely understood, and treatment options are limited. There is growing evidence that complex interactions between the ocular surface microbiome (OSM) and tear fluid constituents, potentially leading to inflammatory processes, are associated with ocular surface diseases such as DED. In this study, we aimed to find unique compositional and functional features of the OSM associated with human and microbial tear proteins in patients with DED. Applying whole-metagenome shotgun sequencing of forty lid and conjunctival swabs, we identified 229 taxa, with Actinobacteria and Proteobacteria being the most abundant phyla and Propionibacterium acnes the dominating species in the cohort. When DED patients were compared to controls, the species Corynebacterium tuberculostearicum was more abundant in conjunctival samples, whereas the family Propionibacteriaceae was more abundant in lid samples. Functional analysis showed that genes of L-lysine biosynthesis, tetrapyrrole biosynthesis, 5-aminoimidazole ribonucleotide biosynthesis, and the super pathway of L-threonine biosynthesis were enriched in conjunctival samples of controls. The relative abundances of Acinetobacter johnsonii correlated with seven human tear proteins, including mucin-16. The three most abundant microbial tear proteins were the chaperone protein DnaK, the arsenical resistance protein ArsH, and helicase. Compositional and functional features of the OSM and the tear proteome are altered in patients with DED. Ultimately, this may help to design novel interventional therapeutics to target DED.


Assuntos
Síndromes do Olho Seco , Microbiota , Humanos , Proteoma , Olho , Face
3.
J Genet Eng Biotechnol ; 21(1): 81, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550554

RESUMO

BACKGROUND: About one-third of patients with estrogen receptor alpha (ERα)-positive breast cancer have tumors which are progesterone receptor (PR) negative. PR is an important prognostic factor in breast cancer. Patients with ERα-positive/PR-negative tumors have shorter disease-free and overall survival than patients with ERα-positive/PR-positive tumors. New evidence has shown that progesterone (P4) has an anti-proliferative effect in ERα-positive breast cancer cells. However, the role of PR in breast cancer is only poorly understood. METHODS: We disrupted the PR gene (PGR) in ERα-positive/PR-positive T-47D cells using the CRISPR/Cas9 system. This resulted in cell pools we termed PR-low as P4 mediated effects were inhibited or blocked compared to control T-47D cells. We analyzed the gene expression profiles of PR-low and control T-47D cells in the absence of hormone and upon treatment with P4 alone or P4 together with estradiol (E2). Differentially expressed (DE) genes between experimental groups were characterized based on RNA-seq and Gene Ontology (GO) enrichment analyses. RESULTS: The overall gene expression pattern was very similar between untreated PR-low and untreated control T-47D cells. More than 6000 genes were DE in control T-47D cells upon stimulation with P4 or P4 plus E2. When PR-low pools were subjected to the same hormonal treatment, up- or downregulation was either blocked/absent or consistently lower. We identified more than 3000 genes that were DE between hormone-treated PR-low and control T-47D cells. GO analysis revealed seven significantly enriched biological processes affected by PR and associated with G protein-coupled receptor (GPCR) pathways which have been described to support growth, invasiveness, and metastasis in breast cancer cells. CONCLUSIONS: The present study provides new insights into the complex role of PR in ERα-positive/PR-positive breast cancer cells. Many of the genes affected by PR are part of central biological processes of tumorigenesis.

4.
Nat Commun ; 14(1): 2471, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120582

RESUMO

T helper 9 (TH9) cells promote allergic tissue inflammation and express the type 2 cytokines, IL-9 and IL-13, as well as the transcription factor, PPAR-γ. However, the functional role of PPAR-γ in human TH9 cells remains unknown. Here, we demonstrate that PPAR-γ drives activation-induced glycolysis, which, in turn, promotes the expression of IL-9, but not IL-13, in an mTORC1-dependent manner. In vitro and ex vivo experiments show that the PPAR-γ-mTORC1-IL-9 pathway is active in TH9 cells in human skin inflammation. Additionally, we find dynamic regulation of tissue glucose levels in acute allergic skin inflammation, suggesting that in situ glucose availability is linked to distinct immunological functions in vivo. Furthermore, paracrine IL-9 induces expression of the lactate transporter, MCT1, in TH cells and promotes their aerobic glycolysis and proliferative capacity. Altogether, our findings uncover a hitherto unknown relationship between PPAR-γ-dependent glucose metabolism and pathogenic effector functions in human TH9 cells.


Assuntos
Interleucina-9 , PPAR gama , Humanos , Glucose/metabolismo , Glicólise , Inflamação/patologia , Interleucina-13/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Linfócitos T Auxiliares-Indutores
5.
Sci Rep ; 12(1): 19837, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400896

RESUMO

Hypertensive disorders of pregnancy (HDP) contribute substantially to perinatal morbidity and mortality. Epigenetic changes point towards cardio-metabolic dysregulation for these vascular disorders. In early pregnancy, epigenetic changes using cell free DNA (cfDNA) are largely unexplored. We aimed to investigate these in HDP between 11 and 14 weeks of gestation by analysis of cfDNA methylation profiles in patients with hypertensive disorders. We identified patients without chronic hypertension but with subsequent development of preeclampsia (PE) (n = 11), with chronic hypertension (HT) but without PE development (n = 14), and lacking both PE and HT (n = 422). We matched patients according to PE risk factors into three groups (n = 5 each group): (1) PE: no HT but PE development, (2) HT: chronic hypertension but no PE and (3) Control: no PE or HT. We successfully optimized our cfDNA isolation process prior to whole genome bisulfite sequencing. Analysis of cfDNA methylation changes indicate a common predisposition in PE and HT groups, chiefly of maternal origin. Assessment of significant differentially methylated regions and annotated genes point towards a common cardiovascular predisposition in preeclampsia and hypertension groups in the first trimester. We postulate the pivotal role of the maternal cardiovascular system in HDP, which is already evident in the first trimester.


Assuntos
Ácidos Nucleicos Livres , Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Pré-Eclâmpsia/genética , Hipertensão Induzida pela Gravidez/genética , Metilação , Primeiro Trimestre da Gravidez
6.
Biomedicines ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35884808

RESUMO

Intestinal microbiota can modulate portal hypertension through the regulation of the intestinal vasculature. We have recently demonstrated that bacterial antigens activate Paneth cells (PCs) to secrete products that regulate angiogenesis and portal hypertension. In the present work we hypothesized that Paneth cells regulate the development of lymphatic vessels under the control of intestinal microbiota during experimental portal hypertension. We used a mouse model of inducible PCs depletion (Math1Lox/LoxVilCreERT2) and performed partial portal vein ligation (PPVL) to induce portal hypertension. After 14 days, we performed mRNA sequencing and evaluated the expression of specific lymphangiogenic genes in small intestinal tissue. Intestinal and mesenteric lymphatic vessels proliferation was assessed by immunohistochemistry. Intestinal organoids with or without PCs were exposed to pathogen-associated molecular patterns, and conditioned media (CM) was used to stimulate human lymphatic endothelial cells (LECs). The lymphangiogenic activity of stimulated LECs was assessed by tube formation and wound healing assays. Secretome analysis of CM was performed using label-free proteomics quantification methods. Intestinal immune cell infiltration was evaluated by immunohistochemistry. We observed that the intestinal gene expression pattern was altered by the absence of PCs only in portal hypertensive mice. We found a decreased expression of specific lymphangiogenic genes in the absence of PCs during portal hypertension, resulting in a reduced proliferation of intestinal and mesenteric lymphatic vessels as compared to controls. In vitro analyses demonstrated that lymphatic tube formation and endothelial wound healing responses were reduced significantly in LECs treated with CM from organoids without PCs. Secretome analyses of CM revealed that PCs secrete proteins that are involved in lipid metabolism, cell growth and proliferation. Additionally, intestinal macrophages infiltrated the ileal mucosa and submucosa of mice with and without Paneth cells in response to portal hypertension. Our results suggest that intestinal microbiota signals stimulate Paneth cells to secrete factors that modulate the intestinal and mesenteric lymphatic vessels network during experimental portal hypertension.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35676093

RESUMO

BACKGROUND AND OBJECTIVES: Experimental studies indicate shared molecular pathomechanisms in cerebral hypoxia-ischemia and autoimmune neuroinflammation. This has led to clinical studies investigating the effects of immunomodulatory therapies approved in multiple sclerosis on inflammatory damage in stroke. So far, mutual and combined interactions of autoimmune, CNS antigen-specific inflammatory reactions and cerebral ischemia have not been investigated so far. METHODS: Active MOG35-55 experimental autoimmune encephalomyelitis (EAE) was induced in male C57Bl/6J mice. During different phases of EAE, transient middle cerebral artery occlusion (tMCAO, 60 minutes) was induced. Brain tissue was analyzed for infarct size and immune cell infiltration. Multiplex gene expression analysis was performed for 186 genes associated with neuroinflammation and hypoxic-ischemic damage. RESULTS: Mice with severe EAE disease showed a substantial reduction in infarct size after tMCAO. Histopathologic analysis showed less infiltration of CD45+ hematopoietic cells in the infarct core of severely diseased acute EAE mice; this was accompanied by an accumulation of Arginase1-positive/Iba1-positive cells. Gene expression analysis indicated an involvement of myeloid cell-driven anti-inflammatory mechanisms in the attenuation of ischemic injury in severely diseased mice exposed to tMCAO in the acute EAE phase. DISCUSSION: CNS autoantigen-specific autoimmunity has a protective influence on primary tissue damage after experimental stroke, indicating a very early involvement of CNS antigen-specific, myeloid cell-associated anti-inflammatory immune mechanisms that mitigate ischemic injury in the acute EAE phase.


Assuntos
Encefalomielite Autoimune Experimental , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Infarto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Células Mieloides/patologia , Doenças Neuroinflamatórias
8.
PLoS One ; 17(3): e0264057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298474

RESUMO

OBJECTIVE: To identify distinctly regulated gene markers and enriched gene sets in breast tissue of cynomolgus monkeys (Macaca fascicularis) treated for six months with either conjugated equine estrogens (CEE) or estradiol (E2) by analysis of corresponding mRNA levels of genes associated with breast development, carcinogenesis, apoptosis and immune regulation. Additionally, translation of three nuclear markers was analyzed. METHODS: RNA from breast biopsies and necropsies was isolated from two independent study trials from Ethun et al. (CEE) and Foth et al. (E2) after 6 month of treatment duration. RNA was subjected to qRT-PCR and MicroArray analysis. Immunohistochemical stainings were performed for the estrogen receptor alpha subunit (ERa), the progesterone receptor (PGR) and the proliferation marker Ki67. RESULTS: We identified a total of 36 distinctly enriched gene sets. Thirty-one were found in the CEE treatment group and five were found in the E2 treatment group, with no overlap. Furthermore, two individual genes IGFBP1 and SGK493 were upregulated in CEE treated animals. Additional targeted qRT-PCR analysis of ten specific estrogen-related genes showed upregulation of three genes (TFF1, PGR and GREB1) after CEE treatment, respectively one gene (TFF1) after E2 treatment. Immunohistochemical stains of breast biopsies showed a significant increase in expression of the PGR marker after CEE treatment. CONCLUSIONS: In this study we identified enriched gene sets possibly induced by CEE or E2 treatment in various processes associated with cancer biology and immunology. This preliminary translational data supports the concept that different estrogen types have different effects on healthy breast tissue and may help generate hypotheses for future research.


Assuntos
Estradiol , Estrogênios Conjugados (USP) , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Estrogênios/metabolismo , Estrogênios Conjugados (USP)/farmacologia , Feminino , Humanos , Macaca fascicularis , RNA
9.
BMC Urol ; 21(1): 172, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876093

RESUMO

BACKGROUND: Interstitial cystitis, or bladder pain syndrome (IC/BPS), is a chronic bladder disorder characterized by lower abdominal pain associated with the urinary bladder and accompanied by urinary frequency and urgency in the absence of identifiable causes. IC/PBS can be separated into the classic Hunner's ulcerative type and the more prevalent non-ulcerative disease. Our aim was to unravel the biological processes and dysregulated cell signaling pathways leading to the bladder remodeling in non-ulcerative bladder pain syndrome (BPS) by studying the gene expression changes in the patients' biopsies. METHODS: We performed paired microRNA (miRNA) and mRNA expression profiling in the bladder biopsies of BPS patients with non-Hunner interstitial cystitis phenotype, using comprehensive Next-generation sequencing (NGS) and studied the activated pathways and altered biological processes based on the global gene expression changes. Paired mRNA-miRNA transcriptome analysis delineated the regulatory role of the dysregulated miRNAs by identifying their targets in the disease-induced pathways. RESULTS: EIF2 Signaling and Regulation of eIF4 and p70S6K Signaling, activated in response to cellular stress, were among the most significantly regulated processes during BPS. Leukotriene Biosynthesis nociceptive pathway, important in inflammatory diseases and neuropathic pain, was also significantly activated. The biological processes identified using Gene Ontology over-representation analysis were clustered into six main functional groups: cell cycle regulation, chemotaxis of immune cells, muscle development, muscle contraction, remodeling of extracellular matrix and peripheral nervous system organization and development. Compared to the Hunner's ulcerative type IC, activation of the immune pathways was modest in non-ulcerative BPS, limited to neutrophil chemotaxis and IFN-γ-mediated signaling. We identified 62 miRNAs, regulated and abundant in BPS and show that they target the mRNAs implicated in eIF2 signalling pathway. CONCLUSIONS: The bladders of non-ulcerative BPS patients recruited in this study had alterations consistent with a strong cell proliferative response and an up-regulation of smooth muscle contractility, while the contribution of inflammatory processes was modest. Pathway analysis of the integrated mRNA-miRNA NGS dataset pinpointed important regulatory miRNAs whose dysregulation might contribute to the pathogenesis. Observed molecular changes in the peripheral nervous system organization and development indicate the potential role of local bladder innervation in the pain perceived in this type of BPS.


Assuntos
Cistite Intersticial/genética , Cistite Intersticial/patologia , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , RNA Mensageiro/genética , Bexiga Urinária/patologia , Adulto , Biópsia , Cistite Intersticial/etiologia , Feminino , Humanos , Pessoa de Meia-Idade
10.
PLoS One ; 16(10): e0258505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662347

RESUMO

The intestinal microbiome plays a central role in human health and disease. While its composition is relatively stable throughout adulthood, the microbial balance starts to decrease in later life stages. Thus, in order to maintain a good quality of life, including the prevention of age-associated diseases in the elderly, it is important to understand the dynamics of the intestinal microbiome. In this study, stool samples of 278 participants were sequenced by whole metagenome shotgun sequencing and their taxonomic and functional profiles characterized. The two age groups, below65 and above65, could be separated based on taxonomic and associated functional features using Multivariate Association of Linear Models. In a second approach, through machine learning, biomarkers connecting the intestinal microbiome with age were identified. These results reflect the importance to select age-matched study groups for unbiased metagenomic data analysis and the possibility to generate robust data by applying independent algorithms for data analysis. Furthermore, since the intestinal microbiome can be modulated by antibiotics and probiotics, the data of this study may have implications on preventive strategies of age-associated degradation processes and diseases by microbiome-altering interventions.


Assuntos
Microbioma Gastrointestinal , Adulto , Idoso , Humanos , Qualidade de Vida
11.
Invest Ophthalmol Vis Sci ; 62(10): 8, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34369983

RESUMO

Purpose: The purpose of this study was to explore the interplay between the ocular surface microbiome and the tear proteome in humans in order to better understand the pathogenesis of ocular surface-associated diseases. Methods: Twenty eyes from 20 participants were included in the study. The ocular surface microbiome was sequenced by whole-metagenome shotgun sequencing using lid and conjunctival swabs. Furthermore, the tear proteome was identified using chromatography tandem mass spectrometry. After compositional and functional profiling of the metagenome and functional characterization of the proteome by gene ontology, association studies between the ocular microbiome and tear proteome were assessed. Results: Two hundred twenty-nine taxa were identified with Actinobacteria and Proteobacteria being the most abundant phyla with significantly more Propionibacterium acnes and Staphylococcus epidermidis in lid compared to conjunctival swabs. The lid metagenomes were enriched in genes of the glycolysis lll and adenosine nucleotides de novo and L-isoleucine biosynthesis. Correlations between the phylum Firmicutes and fatty acid metabolism, between the genus Agrobacterium as well as vitamin B1 synthesis and antimicrobial activity, and between biosynthesis of heme, L-arginine, as well as L-citrulline and human vision were detected. Conclusions: The ocular surface microbiome was found to be associated with the tear proteome with a role in human immune defense. This study has a potential impact on the development of treatment strategies for ocular surface-associated diseases.


Assuntos
Bactérias/genética , Túnica Conjuntiva/microbiologia , Infecções Oculares Bacterianas/genética , Microbiota/fisiologia , Proteoma/genética , Lágrimas/metabolismo , Idoso , Túnica Conjuntiva/metabolismo , Infecções Oculares Bacterianas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/metabolismo
12.
Genes (Basel) ; 12(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440442

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial disease. Upregulated TLR7 signaling is a known risk factor for SLE. Recently, it was shown that specific genetic variants in UNC93B1 affect the physiological regulation of TLR7 signaling and cause characteristic autoimmune phenotypes with monogenic autosomal recessive inheritance in mutant mice and dogs. We therefore hypothesized that homologous variants in the human UNC93B1 gene might be responsible for a fraction of human SLE patients. We analyzed 536 patients of the Swiss SLE Cohort Study for the presence of genetic variants affecting the C-terminal tail of UNC93B1. None of the investigated patients carried bi-allelic UNC93B1 variants that were likely to explain their SLE phenotypes. We conclude that genetic variants affecting the C-terminal tail of UNC93B1 are not a common risk factor for SLE. It cannot be excluded that such variants might contribute to other heritable autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana Transportadoras/genética , Adulto , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Transdução de Sinais/genética , Receptor 7 Toll-Like/genética
13.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847205

RESUMO

Intestinal microbiota regulates multiple host metabolic and immunological processes. Consequently, any difference in its qualitative and quantitative composition is susceptible to exert significant effects, in particular along the gut-liver axis. Indeed, recent findings suggest that such changes modulate the severity and the evolution of a wide spectrum of hepatobiliary disorders. However, the mechanisms linking intestinal microbiota and the pathogenesis of liver disease remain largely unknown. In this work, we investigated how a distinct composition of the intestinal microbiota, in comparison with germ-free conditions, may lead to different outcomes in an experimental model of acute cholestasis. Acute cholestasis was induced in germ-free (GF) and altered Schaedler's flora (ASF) colonized mice by common bile duct ligation (BDL). Studies were performed 5 days after BDL and hepatic histology, gene expression, inflammation, lipids metabolism, and mitochondrial functioning were evaluated in normal and cholestatic mice. Differences in plasma concentration of bile acids (BA) were evaluated by UHPLC-HRMS. The absence of intestinal microbiota was associated with significant aggravation of hepatic bile infarcts after BDL. At baseline, we found the absence of gut microbiota induced altered expression of genes involved in the metabolism of fatty and amino acids. In contrast, acute cholestasis induced altered expression of genes associated with extracellular matrix, cell cycle, autophagy, activation of MAPK, inflammation, metabolism of lipids, and mitochondrial functioning pathways. Ductular reactions, cell proliferation, deposition of collagen 1 and autophagy were increased in the presence of microbiota after BDL whereas GF mice were more susceptible to hepatic inflammation as evidenced by increased gene expression levels of osteopontin, interleukin (IL)-1ß and activation of the ERK/MAPK pathway as compared to ASF colonized mice. Additonally, we found that the presence of microbiota provided partial protection to the mitochondrial functioning and impairment in the fatty acid metabolism after BDL. The concentration of the majority of BA markedly increased after BDL in both groups without remarkable differences according to the hygiene status of the mice. In conclusion, acute cholestasis induced more severe liver injury in GF mice compared to mice with limited intestinal bacterial colonization. This protective effect was associated with different hepatic gene expression profiles mostly related to tissue repair, metabolic and immune functions. Our findings suggest that microbial-induced differences may impact the course of cholestasis and modulate liver injury, offering a background for novel therapies based on the modulation of the intestinal microbiota.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Colestase/microbiologia , Microbioma Gastrointestinal , Expressão Gênica , Fígado/metabolismo , Fígado/microbiologia , Animais , Ductos Biliares/cirurgia , Modelos Animais de Doenças , Vida Livre de Germes , Interações entre Hospedeiro e Microrganismos , Inflamação/microbiologia , Ligadura/efeitos adversos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Front Cell Dev Biol ; 9: 622539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869172

RESUMO

Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits. Thus, we hypothesized that sEV derived from WJ-MSC directly promote oligodendroglial maturation in oligodendrocyte precursor cells. To test this assumption, sEV were isolated from culture supernatants of human WJ-MSC by ultracentrifugation and co-cultured with the human immortalized oligodendrocyte precursor cell line MO3.13. As many regulatory functions in WMI have been ascribed to microRNA (miR) and as sEV are carriers of functional miR which can be delivered to target cells, we characterized and quantified the miR content of WJ-MSC-derived sEV by next-generation sequencing. We found that WJ-MSC-derived sEV co-localized with MO3.13 cells within 4 h. After 5 days of co-culture, the expression of myelin basic protein (MBP), a marker for mature oligodendrocytes, was significantly increased, while the oligodendrocyte precursor marker platelet-derived growth factor alpha (PDGFRα) was decreased. Notch and MAPK/ERK pathways known to inhibit oligodendrocyte maturation and differentiation were significantly reduced. The pathway enrichment analysis showed that the miR present in WJ-MSC-derived sEV target genes having key roles in the MAPK pathway. Our data strongly suggest that sEV from WJ-MSC directly drive the maturation of oligodendrocyte precursor cells by repressing Notch and MAPK/ERK signaling.

15.
Cell Host Microbe ; 29(4): 650-663.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33662276

RESUMO

Isobiotic mice, with an identical stable microbiota composition, potentially allow models of host-microbial mutualism to be studied over time and between different laboratories. To understand microbiota evolution in these models, we carried out a 6-year experiment in mice colonized with 12 representative taxa. Increased non-synonymous to synonymous mutation rates indicate positive selection in multiple taxa, particularly for genes annotated for nutrient acquisition or replication. Microbial sub-strains that evolved within a single taxon can stably coexist, consistent with niche partitioning of ecotypes in the complex intestinal environment. Dietary shifts trigger rapid transcriptional adaptation to macronutrient and micronutrient changes in individual taxa and alterations in taxa biomass. The proportions of different sub-strains are also rapidly altered after dietary shift. This indicates that microbial taxa within a mouse colony adapt to changes in the intestinal environment by long-term genomic positive selection and short-term effects of transcriptional reprogramming and adjustments in sub-strain proportions.


Assuntos
Adaptação Fisiológica , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Adaptação Fisiológica/imunologia , Animais , Bactérias/genética , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Genômica , Imunidade , Intestinos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Ralstonia , Simbiose
17.
NPJ Genom Med ; 5: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922859

RESUMO

Age-related macular degeneration (AMD) is a leading cause of severe vision loss in the aged population. The etiology of AMD is multifactorial including nutritional factors, genetic variants mainly in the complement pathway, environmental risk factors and alterations in the intestinal microbiome. However, it remains unexplored whether there is an interdependency of these factors leading to the development of AMD. To investigate this issue, a shotgun metagenomics analysis of 57 neovascular AMD and 58 healthy controls as well as of 16 complement C3-deficient mice and 16 wildtypes was performed. Whereas the class Negativicutes was more abundant in patients, the genus Oscillibacter and species Bacteroides had a significantly higher prevalence in persons without AMD. Similar taxonomic features were identified that distinguished wildtype mice from C3-deficient mice. Moreover, several purine signaling pathways were associated with both, neovascular AMD and C3 deficiency. While SNPs within the complement factor B gene were more abundant in controls, SNPs within the high temperature requirement A serine peptidase 1 and complement factor H (CFH) genes were associated with neovascular AMD. Using a classification model, Negativicutes was identified as a potential biomarker for AMD and furthermore, it positively correlated with CFH. This study suggests an association between the intestinal microbiome and the complement system in neovascular AMD.

18.
Front Immunol ; 11: 1429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733474

RESUMO

The present study investigated the transcriptomic response of porcine dendritic cells (DC) to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization, suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC activation profile during highly and low virulent classical swine fever virus (CSFV, strain Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing a severe immunopathology. After identification of porcine conventional DC (cDC) 1, cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC activation using transcriptomics, and focused on chemokines, interferons, cytokines, as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine pDC provide important signals for Th1 and interferon responses, with CpG triggering the strongest responses in pDC. DC isolated early after infection of pigs with either of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10, CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15, IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC. Interestingly, the infection was associated with a prominent induction of inhibitory and cell death receptors. When comparing low and highly virulent CSFV strains, the latter induced a stronger inflammatory and antiviral response but a weaker cell cycle response, and reduced antigen presentation functions of DC. Taken together, we provide high-resolution information on DC activation in pigs, as well as information on how DC modulation could be linked to CSFV immunopathology.


Assuntos
Peste Suína Clássica/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Suínos/imunologia , Animais , Vírus da Febre Suína Clássica/imunologia , Suínos/virologia
19.
J Hepatol ; 73(3): 628-639, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32205193

RESUMO

BACKGROUND & AIMS: Paneth cells (PCs) synthesize and secrete antimicrobial peptides that are key mediators of host-microbe interactions, establishing a balance between intestinal microflora and enteric pathogens. We observed that their number increases in experimental portal hypertension and aimed to investigate the mechanisms by which these cells can contribute to the regulation of portal pressure. METHODS: We first treated Math1Lox/LoxVilcreERT2 mice with tamoxifen to induce the complete depletion of intestinal PCs. Subsequently, we performed partial portal vein or bile duct ligation. We then studied the effects of these interventions on hemodynamic parameters, proliferation of blood vessels and the expression of genes regulating angiogenesis. Intestinal organoids were cultured and exposed to different microbial products to study the composition of their secreted products (by proteomics) and their effects on the proliferation and tube formation of endothelial cells (ECs). In vivo confocal laser endomicroscopy was used to confirm the findings on blood vessel proliferation. RESULTS: Portal hypertension was significantly attenuated in PC-depleted mice compared to control mice and was associated with a decrease in portosystemic shunts. Depletion of PCs also resulted in a significantly decreased density of blood vessels in the intestinal wall and mesentery. Furthermore, we observed reduced expression of intestinal genes regulating angiogenesis in Paneth cell depleted mice using arrays and next generation sequencing. Tube formation and wound healing responses were significantly decreased in ECs treated with conditioned media from PC-depleted intestinal organoids exposed to intestinal microbiota-derived products. Proteomic analysis of conditioned media in the presence of PCs revealed an increase in factors regulating angiogenesis and additional metabolic processes. In vivo endomicroscopy showed decreased vascular proliferation in the absence of PCs. CONCLUSIONS: These results suggest that in response to intestinal flora and microbiota-derived factors, PCs secrete not only antimicrobial peptides, but also pro-angiogenic signaling molecules, thereby promoting intestinal and mesenteric angiogenesis and regulating portal hypertension. LAY SUMMARY: Paneth cells are present in the lining of the small intestine. They prevent the passage of bacteria from the intestine into the blood circulation by secreting substances to fight bacteria. In this paper, we discovered that these substances not only act against bacteria, but also increase the quantity of blood vessels in the intestine and blood pressure in the portal vein. This is important, because high blood pressure in the portal vein may result in several complications which could be targeted with novel approaches.


Assuntos
Infecções por Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Hipertensão Portal/metabolismo , Hipertensão Portal/microbiologia , Neovascularização Patológica/metabolismo , Celulas de Paneth/metabolismo , Animais , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Transgênicos , Organoides/metabolismo , Organoides/microbiologia , Celulas de Paneth/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteoma , Proteômica/métodos , Tamoxifeno/farmacologia
20.
Int J Parasitol ; 50(3): 227-233, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32109482

RESUMO

Tritrichomonas foetus is a protozoan parasite that colonizes the reproductive tract of cattle as well as the gastrointestinal tract of cats. Bovine tritrichomonosis is a sexually transmitted disease whereas feline tritrichomonosis is thought to be transmitted by the fecal-oral route. Furthermore, T. foetus is known as an essentially apathogenic commensal located in the nasal cavity of pigs. Transmission of T. foetus between the different hosts has to be considered a realistic scenario that may have important implications for the epidemiology of infections and disease. In our study, we generated whole genome sequencing (WGS) data from bovine, feline and porcine T. foetus strains to investigate the genetic (dis)similarities among these diverse strains. As a reference, we used a previously released draft assembly from a bovine T. foetus strain K isolated from an infected bull in Brazil. In particular, we identified single nucleotide polymorphisms (SNPs) and the insertion-deletion (indel) variations within the genomes of the different strains. Interestingly, only a low degree of polymorphism (68 SNPs and indels) was found between the bovine and the porcine strains in terms of variants with a predicted impact of moderate or high and where one species is homozygous for one allele and the other homozygous for the other allele. Conversely, however, a 964 times higher number of such differences was detected by comparing the feline with either the bovine (65,569) or the porcine (65,615) strain. These data clearly indicated a close phylogenetic relationship between bovine and porcine T. foetus but a remarkable genetic distinctness of these two strains from the feline strain. The latter observation was confirmed by PCR-based sequencing of 20 in silico-selected indel markers and five in silico-selected SNP markers that uniformly demonstrated a relatively distant phylogenetic relationship of three independent feline T. foetus isolates in comparison to the bovine and porcine strains investigated. In summary, our comparative genome sequencing approach provided further insights into the genetic diversity of T. foetus in relation to the different host origins of the parasite. Furthermore, our study identified a large number of SNP- and indel-containing sequences that may be useful molecular markers for future epidemiological studies aimed at the elucidation of the transmission patterns of T. foetus within different host species.


Assuntos
Infecções Protozoárias em Animais/parasitologia , Tritrichomonas foetus/genética , Sequenciamento Completo do Genoma , Animais , Doenças do Gato/parasitologia , Gatos , Bovinos , Doenças dos Bovinos/parasitologia , Fezes , Variação Genética , Genótipo , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único , Suínos , Doenças dos Suínos/parasitologia , Tritrichomonas foetus/classificação , Tritrichomonas foetus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA